Evolutionary Biology

, Volume 36, Issue 2, pp 248–255 | Cite as

Homology: Homeostatic Property Cluster Kinds in Systematics and Evolution



Taxa and homologues can in our view be construed both as kinds and as individuals. However, the conceptualization of taxa as natural kinds in the sense of homeostatic property cluster kinds has been criticized by some systematists, as it seems that even such kinds cannot evolve due to their being homeostatic. We reply by arguing that the treatment of transformational and taxic homologies, respectively, as dynamic and static aspects of the same homeostatic property cluster kind represents a good perspective for supporting the conceptualization of taxa as kinds. The focus on a phenomenon of homology based on causal processes (e.g., connectivity, activity-function, genetics, inheritance, and modularity) and implying relationship with modification yields a notion of natural kinds conforming to the phylogenetic-evolutionary framework. Nevertheless, homeostatic property cluster kinds in taxonomic and evolutionary practice must be rooted in the primacy of epistemological classification (homology as observational properties) over metaphysical generalization (series of transformation and common ancestry as unobservational processes). The perspective of individuating characters exclusively by historical-transformational independence instead of their developmental, structural, and functional independence fails to yield a sufficient practical interplay between theory and observation. Purely ontological and ostensional perspectives in evolution and phylogeny (e.g., an ideographic character concept and PhyloCode’s ‘individualism’ of clades) may be pragmatically contested in the case of urgent issues in biodiversity research, conservation, and systematics.


Characters Individuals Monophyly Natural kinds Phylogeny Similarity Taxonomy Transformational and taxic homology 


  1. Assis, L. C. S. (in preparation). Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics.Google Scholar
  2. Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61(1–2), 127–148. doi:10.1007/BF00385837.CrossRefGoogle Scholar
  3. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 141–185). Cambridge, MA: The MIT Press.Google Scholar
  4. Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22(5), 709–725. doi:10.1007/s10539-007-9089-3.CrossRefGoogle Scholar
  5. Brigandt, I. (2009). Natural kinds in evolution and systematics: Metaphysical and epistemological considerations. Acta Biotheoretica. doi:10.1007/s10441-008-9056-7.
  6. Brower, A. V. Z., & Schawaroch, V. (1996). Three steps of homology assessment. Cladistics, 12(3), 265–272.Google Scholar
  7. Bryant, H. N. (2001). Character polarity and the rooting of cladograms. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 319–338). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  8. Cantino, P. D., & de Queiroz, K. (2007). PhyloCode. International code of phylogenetic nomenclature, version 4a. Retrieved from http://www.ohiou.edu/phylocode/.
  9. de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., & Brandão, C. R. F. (2008). Systematics must embrace comparative biology and evolution, not speed and automation. Evolutionary Biology, 35(2), 150–157. doi:10.1007/s11692-008-9018-7.CrossRefGoogle Scholar
  10. de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7(4), 367–394. doi:10.1111/j.1096-0031.1991.tb00045.x.CrossRefGoogle Scholar
  11. Dupré, J. (1981). Natural kinds and biological taxa. The Philosophical Review, 90(1), 66–90. doi:10.2307/2184373.CrossRefGoogle Scholar
  12. Dupré, J. (1999). On the impossibility of a monistic account of species. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 3–22). Cambridge, MA: The MIT Press.Google Scholar
  13. Ereshesfky, M. (2007). Foundational issues concerning taxa names. Systematic Biology, 56(2), 295–301. doi:10.1080/10635150701317401.CrossRefGoogle Scholar
  14. Franz, N. M. (2005). Outline of an explanatory account of cladistic practice. Biology and Philosophy, 20(2–3), 489–515. doi:10.1007/s10539-004-0757-2.Google Scholar
  15. Ghiselin, M. T. (2005). Homology as a relation of correspondence between parts of individuals. Theory in Biosciences, 124(2), 91–103.PubMedGoogle Scholar
  16. Grant, T., Frost, D. R., Caldwell, J. P., Gagliardo, R., Haddad, C. F. B., Kok, J. R., et al. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (Anura: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299(1), 1–262. doi:10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2.CrossRefGoogle Scholar
  17. Grant, T., & Kluge, A. G. (2004). Transformation series as an ideographic character concept. Cladistics, 20(1), 23–31. doi:10.1111/j.1096-0031.2004.00003.x.CrossRefGoogle Scholar
  18. Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9(4), 393–401.Google Scholar
  19. Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.Google Scholar
  20. Jamniczky, H. A. (2008). Phenotypic integration patterns support an account of homology as a manifestation of evolvability. Evolutionary Biology, 35(4), 312–316. doi:10.1007/s11692-008-9039-2.CrossRefGoogle Scholar
  21. Kearney, M., & Rieppel, O. (2006). Rejecting the “given” in systematics. Cladistics, 22(4), 369–377. doi:10.1111/j.1096-0031.2006.00110.x.CrossRefGoogle Scholar
  22. Keller, R. A., Boyd, R. N., & Wheeler, Q. D. (2003). The illogical basis of phylogenetic nomenclature. Botanical Review, 69(1), 93–110. doi:10.1663/0006-8101(2003)069[0093:TIBOPN]2.0.CO;2.CrossRefGoogle Scholar
  23. Kluge, A. G. (2003). On the deduction of species relationships: A précis. Cladistics, 19(3), 233–239.Google Scholar
  24. LaPorte, J. (2004). Natural kinds and conceptual change. Cambridge: Cambridge University Press.Google Scholar
  25. Nelson, G. (1989a). Cladistics and evolutionary models. Cladistics, 5(3), 275–289. doi:10.1111/j.1096-0031.1989.tb00490.x.CrossRefGoogle Scholar
  26. Nelson, G. (1989b). Species and taxa: Systematics and evolution. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 60–81). Sunderland, MA: Sinauer Associates.Google Scholar
  27. Nelson, G. (1994). Homology and systematics. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 101–149). San Diego, CA: Academic Press.Google Scholar
  28. Nixon, K. C., Carpenter, J. M., & Stevenson, D. W. (2003). The PhyloCode is fatally flawed, and the “Linnaean” system can easily be fixed. Botanical Review, 69(1), 111–120. doi:10.1663/0006-8101(2003)069[0111:TPIFFA]2.0.CO;2.CrossRefGoogle Scholar
  29. Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of phylogenetic reconstruction (pp. 21–74). London: Academic Press.Google Scholar
  30. Pleijel, F., & Härlin, M. (2004). Phylogenetic nomenclature is compatible with diverse philosophical perspectives. Zoologica Scripta, 33(6), 587–591. doi:10.1111/j.0300-3256.2004.00164.x.CrossRefGoogle Scholar
  31. Rieppel, O. C. (1988). Fundamentals of comparative biology. Basel, Switzerland: Birkhäuser Verlag.Google Scholar
  32. Rieppel, O. (1999). Turtle origins. Science, 283(5404), 945–946. doi:10.1126/science.283.5404.945.PubMedCrossRefGoogle Scholar
  33. Rieppel, O. (2003). Semaphoronts, cladograms and the roots of total evidence. Biological Journal of the Linnean Society. Linnean Society of London, 80(1), 167–186. doi:10.1046/j.1095-8312.2003.00228.x.CrossRefGoogle Scholar
  34. Rieppel, O. (2004). The language of systematics, and the philosophy of ‘total evidence’. Systematics and Biodiversity, 2(1), 9–19. doi:10.1017/S147720000400132X.CrossRefGoogle Scholar
  35. Rieppel, O. (2005a). Monophyly, paraphyly, and natural kinds. Biology and Philosophy, 20(2–3), 465–487. doi:10.1007/s10539-004-0679-z.Google Scholar
  36. Rieppel, O. (2005b). Modules, kinds, and homology. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 304(1), 18–27. doi:10.1002/jez.b.21025.PubMedCrossRefGoogle Scholar
  37. Rieppel, O. (2006). The PhyloCode: A critical discussion of its theoretical foundation. Cladistics, 22(2), 186–197. doi:10.1111/j.1096-0031.2006.00097.x.CrossRefGoogle Scholar
  38. Rieppel, O. (2007a). Species: Kinds of individuals or individuals of a kind. Cladistics, 23(4), 373–384. doi:10.1111/j.1096-0031.2007.00152.x.CrossRefGoogle Scholar
  39. Rieppel, O. (2007b). The performance of morphological characters in broad-scale phylogenetic analyses. Biological Journal of the Linnean Society. Linnean Society of London, 92(2), 297–308. doi:10.1111/j.1095-8312.2007.00847.x.CrossRefGoogle Scholar
  40. Rieppel, O. (2008). Origins, taxa, names and meanings. Cladistics, 24(4), 598–610. doi:10.1111/j.1096-0031.2007.00195.x.CrossRefGoogle Scholar
  41. Rieppel, O., & Kearney, M. (2002). Similarity. Biological Journal of the Linnean Society Linnean Society of London, 75(1), 59–82. doi:10.1046/j.1095-8312.2002.00006.x.CrossRefGoogle Scholar
  42. Schlosser, G., & Wagner, G. P. (Eds.). (2004). Modularity in development and evolution. Chicago: University of Chicago Press.Google Scholar
  43. von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements for a conceptual framework for evodevo. Journal of Experimental Zoology. Part B. Molecular Developmental Evolution, 285(4), 307–325.CrossRefGoogle Scholar
  44. Wagner, G. P. (1996). Homologues, natural kinds, and the evolution of modularity. American Zoologist, 36(1), 36–43.Google Scholar
  45. Wagner, G. P. (2001). Characters, units, and natural kinds: An introduction. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 1–10). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  46. Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews. Genetics, 8(6), 473–479. doi:10.1038/nrg2099.PubMedCrossRefGoogle Scholar
  47. Wagner, G. P., & Laubichler, M. D. (2001). Character identification: The role of the organism. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 141–163). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  48. Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1444), 571–583. doi:10.1098/rstb.2003.1452.PubMedCrossRefGoogle Scholar
  49. Wheeler, Q. D., & Meier, R. (Eds.). (2000). Species concepts and phylogenetic theory: A debate. New York: Columbia University Press.Google Scholar
  50. Wilson, R. A., Barker, M. A., & Brigandt, I. (in press). When traditional essentialism fails: Biological natural kinds. Philosophical Topics, 35(1/2).Google Scholar
  51. Yang, A. S. (2001). Modularity, evolvability, and adaptive radiations: A comparison of the hemi-holometabolous insects. Evolution & Development, 3(2), 59–72. doi:10.1046/j.1525-142x.2001.003002059.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratório de Sistemática Vegetal, Departamento de BotânicaUniversidade de São PauloSão PauloBrazil
  2. 2.Department of PhilosophyUniversity of AlbertaEdmontonCanada

Personalised recommendations