Skip to main content
Log in

Primate Growth in the Slow Lane: A Study of Inter-Species Variation in the Growth Constant A

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Primates grow and develop slowly for mammalian standards. Charnov showed that primates grow at only about 40% of the rates observed in other mammals of similar size. However, previous estimates of growth rates in primates were derived from regressions of adult body weight on age at first reproduction in different species, and therefore represent only an average trend for primates. Based on Charnov’s ‘growth law’, we estimated the growth constant A directly from published growth curves for 36 primate species from strepsirrhines to apes. We show that although primate growth is slow in all sampled species in comparison with the mammalian average, there is significant variation around the primate mean. Lemurids are particularly interesting due to their wide range of A values, and further study is required to determine whether environmental unpredictability could lead to the evolution of both very fast and very slow grow in different species. Results also indicate significant negative correlations between the growth constant A and both age at first reproduction and duration of the juvenile period, lending support to the juvenile risk hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiello, L. C., & Wheeler, P. (1995). The expensive tissue hypothesis. Current Anthropology, 36, 199–221. doi:10.1086/204350.

    Article  Google Scholar 

  • Charnov, E. L. (1993). Life history invariants. Some explorations of symmetry in evolutionary ecology. Oxford: Oxford University Press.

    Google Scholar 

  • Charnov, E. L., & Berrigan, D. (1993). Why do primates have such long lifespans and so few babies? Evolutionary Anthropology, 1, 191–194. doi:10.1002/evan.1360010604.

    Article  Google Scholar 

  • Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 207, 151–169.

    Google Scholar 

  • Eveleth, P. B., & Tanner, J. M. (1992). Worldwide variation in human growth. Cambridge: Cambridge University Press.

    Google Scholar 

  • Foley, R. A., & Lee, P. C. (1991). Ecology and energetics of encephalization in hominid evolution. Philosophical Transactions of the Royal Society of London. B, 334, 223–232. doi:10.1098/rstb.1991.0111.

    Article  CAS  Google Scholar 

  • Harvey, P. H., & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution; International Journal of Organic Evolution, 39, 559–581. doi:10.2307/2408653.

    Google Scholar 

  • Hill, K., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. New York: Walter de Gruyter.

    Google Scholar 

  • Janson, C. H., & van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: Slow and steady wins the race. In M. D. Pereira & L. A. Fairbanks (Eds.), Juvenile primates: Life history, development and behaviour (pp. 57–74). Oxford: Oxford University Press.

    Google Scholar 

  • Johnson, S. E. (2003). Life history and the competitive environment: Trajectories of growth, maturation, and reproductive output among Chacma Baboons. American Journal of Physical Anthropology, 120, 83–98. doi:10.1002/ajpa.10139.

    Article  PubMed  Google Scholar 

  • Kaplan, H. S., Hill, K., Lancaster, J. B., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185. doi:10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7.

    Article  Google Scholar 

  • Kappeler, P. M. (1996). Causes and consequences of life history variation among strepsirrhine primates. American Naturalist, 148, 868–887. doi:10.1086/285960.

    Article  Google Scholar 

  • Kappeler, P. M., & Pereira, M. E. (Eds.). (2003). Primate life history and socioecology. Chicago: University of Chicago Press.

    Google Scholar 

  • Lande, R. (1985). Genetic and evolutionary aspects of allometry. In W. L. Jungers (Ed.), Size and scaling in primate biology (pp. 21–32). New York and London: Plenum Press.

    Google Scholar 

  • Leigh, S. R. (1994a). Ontogenetic correlates of diet in anthropoid primates. American Journal of Physical Anthropology, 94, 499–522. doi:10.1002/ajpa.1330940406.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R. (1994b). The relations between captive and wild-shot weights in anthropoid primates. Zoo Biology, 13, 21–44. doi:10.1002/zoo.1430130105.

    Article  Google Scholar 

  • Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–474. doi:10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R. (2001). The evolution of human growth. Evolutionary Anthropology, 10, 223–236. doi:10.1002/evan.20002.

    Article  Google Scholar 

  • Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in African apes. American Journal of Physical Anthropology, 99, 43–65. doi:10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, S. R., & Terranova, C. J. (1998). Comparative perspecties of bimaturism, ontogeny, and dimorphism in lemurid primates. International Journal of Primatology, 19, 723–749. doi:10.1023/A:1020381026848.

    Article  Google Scholar 

  • Marino, L. (1998). A comparison of encephalisation between odontocete cetaceans and anthropoid primates. Brain, Behavior and Evolution, 51, 230–238. doi:10.1159/000006540.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R. D., Genoud, M., & Hemelreik, C. K. (2005). Problems of allometric scaling analysis: Examples from mammalian reproductive biology. The Journal of Experimental Biology, 2008, 1731–1747. doi:10.1242/jeb.01566.

    Article  Google Scholar 

  • Pochron, S. T., Tucker, W. T., & Wright, P. C. (2004). Demography, life history and social structure in Propithecus diadema edwardsi from 1986–2000 in Ranomafana National Park, Madagascar. American Journal of Physical Anthropology, 125, 61–72. doi:10.1002/ajpa.10266.

    Article  PubMed  Google Scholar 

  • Purvis, A. (1995). A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London. Series B, 348, 405–421. doi:10.1098/rstb.1995.0078.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, A., Webster, A. J., & Agapow, P. M. (2003). Primate life histories and socioecology. In P. M. Kappeler & M. E. Pereira (Eds.), Primate life histories and phylogeny (p. 23). Chicago: University of Chicago Press.

    Google Scholar 

  • Ravosa, M. J., Meyers, D. M., & Glander, K. E. (1993). Relative growth of the limbs and trunk in sifakas: Heterochronic, ecological and functional considerations. American Journal of Physical Anthropology, 92, 499–520. doi:10.1002/ajpa.1330920408.

    Article  PubMed  CAS  Google Scholar 

  • Richard, A. F., Dewar, R. E., Schwartz, M., & Ratsirarson, J. (2002). Life in the slow lane? Demography and life history of male and female sifaka (Propithecus verreauxi verreauxi). Journal of Zoology (London, England), 256, 421–436.

    Google Scholar 

  • Ross, C. (1998). Primate Life Histories. Evolutionary Anthropology, 6, 54–63. doi:10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.0.CO;2-W.

    Article  Google Scholar 

  • Ross, C. (2004). The evolution of thought. In A. E. Russon & D. R. Begun (Eds.), Life histories and the evolution of large brain size in great apes (pp. 122–139). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stearns, S. C. (1983). The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos, 41, 173–187. doi:10.2307/3544261.

    Article  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Walker, R., Hill, K., Burger, O., & Hurtado, A. M. (2006). Life in the slow lane revisited: Ontogenetic separation between chimpanzees and humans. American Journal of Physical Anthropology, 129, 577–583. doi:10.1002/ajpa.20306.

    Article  PubMed  Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (2001). A general model for ontogenetic growth. Nature, 413, 628–631. doi:10.1038/35098076.

    Article  PubMed  CAS  Google Scholar 

  • Wright, P. C. (1999). Lemur traits and Madagascar ecology: Coping with an island environment. Yearbook of Physical Anthropology, 110, 31–72. doi:10.1002/(SICI)1096-8644(1999)110:29+<31::AID-AJPA3>3.0.CO;2-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Vinicius.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumby, H., Vinicius, L. Primate Growth in the Slow Lane: A Study of Inter-Species Variation in the Growth Constant A . Evol Biol 35, 287–295 (2008). https://doi.org/10.1007/s11692-008-9040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9040-9

Keywords

Navigation