Skip to main content
Log in

Phenotypic Integration Patterns Support an Account of Homology as a Manifestation of Evolvability

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Data gleaned from the study of phenotypic integration provide important empirical support for a recent theoretical advance in evolutionary developmental biology, in which the phenomenon of homology is construed as an aspect of evolvability. The presence of highly conserved phenotypic covariation structure among distantly related taxa suggests the action of developmental processes that allow the generation of variation while maintaining stability and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501. doi:10.1002/(SICI)1096-8644(200004)111:4<489::AID-AJPA5>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, S. J. (1992). Constraints on phenotypic evolution. American Naturalist, 140, S85–S107. doi:10.1086/285398.

    Article  Google Scholar 

  • Boughner, J. C., & Hallgrímsson, B. (2008). Biological spacetime and the temporal integration of functional modules: a case study of dento-gnathic developmental timing. Developmental Dynamics, 237, 1–17. doi:10.1002/dvdy.21383.

    Article  PubMed  Google Scholar 

  • Brigandt, I. (2003). Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. The Journal of Experimental Zoology, 299B, 9–17. doi:10.1002/jez.b.36. Mol Dev Evol.

    Article  Google Scholar 

  • Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22(5), 709–725. doi:10.1007/s10539-007-9089-3.

    Article  Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution; International Journal of Organic Evolution, 36(3), 499–516. doi:10.2307/2408096.

    Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171. doi:10.1016/S0022-5193(84)80050-8.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution; International Journal of Organic Evolution, 42, 958–968. doi:10.2307/2408911.

    Google Scholar 

  • Cracraft, J. (2005). Phylogeny and evo-devo: characters, homology, and the historical analysis of the evolution of development. Zoology (Jena, Germany), 108, 345–356. doi:10.1016/j.zool.2005.09.003.

    Google Scholar 

  • Darwin, C. R. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Deutsch, J. (2005). Hox and wings. BioEssays, 27, 673–675. doi:10.1002/bies.20260.

    Article  PubMed  Google Scholar 

  • Ereshefsky, M. (2007). Psychological categories as homologies: Lessons from ethology. Biology and Philosophy, 22(5), 659–674. doi:10.1007/s10539-007-9091-9.

    Article  Google Scholar 

  • Fitch, W. M. (2000). Homology: A personal view on some of the problems. Trends in Genetics, 16(5), 227–231. doi:10.1016/S0168-9525(00)02005-9.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., & Kirschner, M. (1998). Evolvability. Proceedings of the National Academy of Sciences of the United States of America, 95, 8420–8427. doi:10.1073/pnas.95.15.8420.

    Article  PubMed  Google Scholar 

  • Griffiths, P. E. (2007). The phenomena of homology. Biology and Philosophy, 22(5), 643–658. doi:10.1007/s10539-007-9090-x.

    Article  Google Scholar 

  • Hall, B. K. (Ed.). (1994). Homology: The hierarchical basis of comparative biology. San Diego: Academic Press.

    Google Scholar 

  • Hall, B. K. (2007). Homoplasy and homology: Dichotomy or continuum? Journal of Human Evolution, 52, 473–479. doi:10.1016/j.jhevol.2006.11.010.

    Article  PubMed  Google Scholar 

  • Hallgrímsson, B., Lieberman, D. E., Young, N. M., Parsons, T. E., & Wat, S. (2007). Evolution of covariance in the mammalian skull. Novartis Foundation Symposium, 284, 164–185. doi:10.1002/9780470319390.ch12.

    Article  PubMed  Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9(4), 393–401.

    Google Scholar 

  • Jones, A. G., Arnold, S. J., & Bürger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution; International Journal of Organic Evolution, 61, 727–745. doi:10.1111/j.1558-5646.2007.00071.x.

    PubMed  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution; International Journal of Organic Evolution, 42, 467–481.

    Google Scholar 

  • Lauder, G. V. (1994). Homology, form, and function. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 151–196). San Diego: Academic Press.

    Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution; International Journal of Organic Evolution, 55(12), 2576–2600.

    PubMed  CAS  Google Scholar 

  • Müller, G. B., & Wagner, G. P. (1991). Novelty in evolution: Restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256. doi:10.1146/annurev.es.22.110191.001305.

    Article  Google Scholar 

  • Olson, R. C., & Miller, R. L. (1999), (1958). Morphological integration. Chicago: University of Chicago Press. 376 p.

  • Owen, R. (1843). Lectures on the comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons, in 1843. London: Longman, Brown, Green, and Longmans.

    Google Scholar 

  • Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of phylogenetic reconstruction (pp. 21–74). London: Academic Press.

    Google Scholar 

  • Roth, V. L. (1994). Within and between organisms: Replicators, lineages, and homologues. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 301–337). San Diego: Academic Press.

    Google Scholar 

  • Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–16). Chicago: University of Chicago Press.

    Google Scholar 

  • Steppan, S. J. (1997a). Phylogenetic analysis of phenotypic covariance structure. I. Contrasting results from matrix correlation and common principal component analysis. Evolution; International Journal of Organic Evolution, 51(2), 571–586. doi:10.2307/2411129.

    Google Scholar 

  • Steppan, S. J. (1997b). Phylogenetic analysis of phenotypic covariation structure. II. Reconstructing matrix evolution. Evolution; International Journal of Organic Evolution, 51(2), 587–594. doi:10.2307/2411130.

    Google Scholar 

  • Tomoyasu, Y., Wheeler, S. R., & Denell, R. E. (2005). Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature, 375, 58–61.

    Google Scholar 

  • Wagner, G. P. (1989). The biological homology concept. Annual Review of Ecology and Systematics, 20, 51–69. doi:10.1146/annurev.es.20.110189.000411.

    Article  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews. Genetics, 8, 473–479. doi:10.1038/nrg2099.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution; International Journal of Organic Evolution, 50(3), 967–976. doi:10.2307/2410639.

    Google Scholar 

  • Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution; International Journal of Organic Evolution, 59(12), 2691–2704.

    PubMed  Google Scholar 

  • Zelditch, M. L. (1988). Ontogenetic variation in patterns of developmental and functional integration in the laboratory rat. Evolution; International Journal of Organic Evolution, 42, 28–81. doi:10.2307/2409113.

    Google Scholar 

Download references

Acknowledgements

I thank, I. Brigandt, J. Boughner, M. Ereshefsky, A. Russell, and two anonymous reviewers for discussion and insightful comments on an earlier draft, although they may not necessarily agree with the arguments presented here. The Alberta Heritage Foundation for Medical Research provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Jamniczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamniczky, H.A. Phenotypic Integration Patterns Support an Account of Homology as a Manifestation of Evolvability. Evol Biol 35, 312–316 (2008). https://doi.org/10.1007/s11692-008-9039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9039-2

Keywords

Navigation