Evolutionary Biology

, Volume 35, Issue 1, pp 4–51 | Cite as

Phylogeny of Higher Taxa in Insecta: Finding Synapomorphies in the Extant Fauna and Separating Them from Homoplasies

Synthesis Paper


Most currently applied systematic methods use post-groundplan character states to reconstruct phylogenies in modern higher Insecta/Arthropoda taxa. But, this approach is unable to separate synapomorphies from frequently occurring homoplasies. Conflicting, unresolved and unrealistic higher-level phylogenies result. The reasons are analyzed. A contrasting “groundplan” method, long used in Vertebrata and found to be superior in resolving higher-level phylogenies, is described. This method, as used for insects, uses a highly diversified morphological organ system (such as limb/wing), identifies its homologues in all subphyla and classes, records the full history of its character transformation series in all lineages from the shared Paleozoic ancestor to modern times, pursues the full homologization of its character states in all modern orders, and verifies these data with evidence from other fields of biology. Only such an extremely broad dataset provides the complex information needed to identify and homologize the groundplan character states in modern orders and other higher taxa in the insect/arthropod fauna. After this is accomplished, the gate to recognizing higher-level synapomorphies is open. Only groundplan-level character states include distinct synapomorphies, since homoplasies are either absent or easily detectable. Examples are given. The interpretations of higher phylogenies and evolutionary processes in Hexapoda, based on the unpredictable and often misleading post-groundplan character states found in extant, Tertiary and Mesozoic fauna, are critically compared with those based on the evolution of organ systems, by using the groundplan method.


Insecta phylogeny Morphology Systematic methods Groundplan method Insect limbs Insect wings 


  1. Abouheif, E., & Wray, G. A. (2002). Evolution of the gene network underlying wing polyphenism in ants. Science, 297, 249–252.PubMedCrossRefGoogle Scholar
  2. Averov, M., & Cohen, M. (1997). Evolutionary origin of wings from ancestral gills. Nature, 385, 627–630.CrossRefGoogle Scholar
  3. Bechly, G., Brauckmann, C., Zessin, W., & Gröning, E. (2001). New results concerning the morphology of the most ancient dragonflies (Insecta: Odonatoptera from the Namurian of Hagen-Vorhalle (Germany). Journal of Zoology, Systematic Evolutionary Research, 39, 209–226.CrossRefGoogle Scholar
  4. Benton, M. (2003). When life nearly died. London: Thames & Hudsoon, 330 p.Google Scholar
  5. Beutel, R. G., & Pohl, H. (2006). Endopterygote systematics—Where do we stand and what is the goal (Hexapoda, Arthropoda)? Systematic Entomology, 31, 202–219.CrossRefGoogle Scholar
  6. Bininda-Emonds, O. R. P., Bryant, H. N., & Russel, A. P. (1998). Supraspecific taxa as terminals in cladistic analysis: implicit assumptions of monophyly and a comparison method. Biological Journal of the Linnean Society, 64, 101–133.Google Scholar
  7. Bocharova-Messner, O. M. (1959). Development of the wing in the early postembryonic stage in the ontogeny of dragonflies (order Odonata). Institut Morfologii Zhitelnych Imeni Severtsova, 27, 187–200, in Russian.Google Scholar
  8. Boudreaux, H. B. (1979). Arthropod phylogeny with special references to Insects. New York: Wiley & Sons, 320 p.Google Scholar
  9. Brodsky, A. K. (1994). The evolution of insect flight. Oxford: Oxford University Press, 229 p.Google Scholar
  10. Carpenter, F. M. (1992). Treatise of invertebrate paleontology, superclass Hexapoda, part R, Arthropoda, 3. Boulder, Colorado: The Geological Society of America, 655 p.Google Scholar
  11. Carpenter, F. M., & Richardson, E. S. (1968). Megasecopterous nymphs in Pennsylvanian concretions from Illinois. Psyche, 75, 295–309.Google Scholar
  12. Carpenter, F. M., & Richardson, E. S. (1971). Additional insects in Pennsylvanian concretions from Illinois. Psyche, 78, 267–295.Google Scholar
  13. CSIRO. (1991). The insects of Australia. The textbook for students and research workers. Naumann, I. F. (Chief Ed.). Melbourne University Press, Melbourne, 1137 p.Google Scholar
  14. Erwin, D. H. (1993). The Great Paleozoic Crisis. Life and death in the Permian. Columbia University Press, 327 p.Google Scholar
  15. Garcia-Beillido, A. (1975). Genetic control of wing disc development in Drosophila. In Cell Patterning. Ciba Foundation Symposium, Vol. 29, pp. 161–182.Google Scholar
  16. Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press, 755 p.Google Scholar
  17. Haas, F., & Kukalová-Peck, J. (2001). Dermaptera hindwing structure and folding: new evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta). European Journal of Entomology, 98, 445–509.Google Scholar
  18. Hennig, W. (1969). Die Stammesgeschichte der Insekten. Frankfurt am Main: Kramer, 436 p.Google Scholar
  19. Hennig, W. (1981). Insect phylogeny. New York: Wiley & Sons, 514 p.Google Scholar
  20. Hovmöler, R., Pape, T., & Kallersjö, M. (2002). The Paleoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics, 18, 313–323.Google Scholar
  21. Kjer, K. M. (2004). Aligned 18S and insect phylogeny. Systematic Biology, 53(3), 506–514.PubMedCrossRefGoogle Scholar
  22. Kingsolver, J. G., & Koehl, M. A. R. (1994). Selective factors in the evolution of insect wings. Annual Review of Entomology, 39, 425–451.CrossRefGoogle Scholar
  23. Kristensen, N. P. (1991). Phylogeny of extant hexapods. The insects of Australia. A textbook for students and research workers (2nd ed.), Vol. 1. Melbourne: Melbourne University Press, pp. 125–140.Google Scholar
  24. Kristensen, N. P. (1995). Forty years’ insect phylogenetic systematics. Zoologische Beitrage, (N.F.), 36, 83–124.Google Scholar
  25. Kristensen, N. P. (1998). The groundplan and basal diversification of the hexapods. In R. A. Fortey, & R. H. Thomas (Eds.), Arthropod Relationships (pp. 281–293). London: Chapman & Hall.Google Scholar
  26. Kukalová-Peck, J. (1969). Revisional study of the order Palaeodictyoptera in the Upper Carboniferous shales of Commentry, France. Part I. Psyche, 76(2), 163–215.CrossRefGoogle Scholar
  27. Kukalová-Peck, J. (1970). Revisional study of the order Palaeodictyoptera in the Upper Carboniferous shales of Commentry, France. Part II and III. Psyche, 76, 439–486; 77, 1–44.Google Scholar
  28. Kukalová-Peck, J. (1974). The order Megasecoptera (Insecta) from the Lower Permian of Moravia with description of new families and nymphal development. Psyche, 82, 1–19.Google Scholar
  29. Kukalová-Peck, J. (1978). Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. Journal of Morphology, 156, 53–126.CrossRefGoogle Scholar
  30. Kukalová-Peck, J. (1983). Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology, 62, 618–1669.Google Scholar
  31. Kukalová-Peck, J. (1985). Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Canadian Journal of Zoology, 63, 993–955.Google Scholar
  32. Kukalová-Peck, J. (1987). New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground plan, and the role of thoracic lobes in the origin of wings (Insecta). Canadian Journal of Zoology, 65, 2327–2345.Google Scholar
  33. Kukalová-Peck, J. (1991). Fossil history and the evolution of hexapod structures. The Insects of Australia. A textbook for students and research workers (2nd ed.), Vol. l. Melbourne: Melbourne University Press, pp. 41–179.Google Scholar
  34. Kukalová-Peck, J. (1992). The “Uniramia” do not exist: the groundplan of Pterygota as revealed by the Permian Diaphanopterodea from Russia (Insecta: Paleodictyopteroidea). Canadian Journal of Zoology, 70, 236–255.Google Scholar
  35. Kukalová-Peck, J. (1998). Arthropod phylogeny and “basal” morphological structures. Arthropod Relationships. In R. A. Fortey & R. H Thomas (Eds.), London: Chapman & Hall pp. 249–268.Google Scholar
  36. Kukalová-Peck, J., & Brauckmann, C. (1990). Wing folding in pterygote insects, and the oldest Diaphanopterodea from the early Late Carboniferous of West Germany. Canadian Journal of Zoology, 68, 1104–1111.CrossRefGoogle Scholar
  37. Kukalová-Peck, J., & Brauckmann, C. (1992). Most Paleozoic Protorthoptera are ancestral hemipteroids: Major wing braces as clues to a new phylogeny of Neoptera (Insecta). Canadian Journal of Zoology, 70, 2452–2473.Google Scholar
  38. Kukalová-Peck, J., & Lawrence, J. F. (2004). Relationship among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters. European Journal of. Entomology, 101, 95–144.Google Scholar
  39. Kukalová-Peck, J., & Richardson, E. S. Jr. (1983). New Homoiopteridae (Insecta: Paleodictyoptera) with wing articulation from Upper Carboniferous strata of Mazon Creek, Illinois. Canadian Journal of Zoology, 61, 670–687.Google Scholar
  40. Maas, A., Waloszek, D., & Müller, K. J. (2003). Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from Upper Cambrian ‘Orten’ of Sweden. Fossils and Strata, 49, 1–238.Google Scholar
  41. Manton, S. M. (1977). The Arthropoda. Habits, functional morphology and evolution. Oxford: Clarendon Press, 527 p.Google Scholar
  42. Marden, J. H. (1995). Flying lessons from a flightless insect. Natural History, 2(95), 6–8.Google Scholar
  43. Marden, J. H. (2003). The surface-skimming hypothesis for the evolution of insect flight. Acta zoologica cracoviensia, 46(Suppl.-Fossil Insects), 73–84.Google Scholar
  44. Marshall, C. R., Raff, E. C., & Raff, R. A. (1994). Dollo’s law and the death and resurrection of genes. Proceedings of National Academy of Sciences, USA, 91, 1283–1287.CrossRefGoogle Scholar
  45. Martynov, A. V. (1923). On two basic types of insect wings and their significance for the general classification of insects. In: Deryugina, K. M. (Ed.), Trudy Pervogo Vserossijskogo S’ezda Zoologov, Anatomov i Gistologov, Vol. 1, pp. 88–89.Google Scholar
  46. Martynov, A. V. (1924). Über zwei Grundtypen der Flügel bei den Insekten und ihre Evolution. Zeitschrift für Morphologie und Oekologie, 4, 465–501.CrossRefGoogle Scholar
  47. Martynov, A. V. (1931). New Permian Paleoptera with the discussion of some problems of their evolution. Trudy Paleozoologicheskogo Instituta, 1, 1–44.Google Scholar
  48. Norling, U. (1982). Structure and ontogeny of the lateral abdominal gills and the caudal gill in Euphaeidae (Odonata: Zygoptera) larvae. Zoologisches Jahrbuch Anatomy, 107, 343–389.Google Scholar
  49. Paganiban, G. A., Serbin, L., Nagy, I., & Caroll, S. (1995). The evolution and patterning of insect limbs. Current Biology, 4, 671–675.CrossRefGoogle Scholar
  50. Popadić, A. G., Paganiban, G. A. Rush, Shear, W. A., & Kaufmann, T. C. (1998). Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Development Genes and Evolution, 208, 42–150.Google Scholar
  51. Prendini, L. (2001). Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Systematic Biology, 50, 290–300.PubMedCrossRefGoogle Scholar
  52. Raff, R. A. (1996). The shape of life. Genes, development, and the evolution of animal form. University of Chicago Press, 520 p.Google Scholar
  53. Raff, R. A., Wray, G. A., & Henry, J. J. (1991). Implications of radical evolutionary changes in early development for concepts of developmental constraints. In L. Waren & H. Koprowski (Eds.), New perspectives on evolution (pp. 189–207). New York: Wiley-Liss.Google Scholar
  54. Riek, E. F., & Kukalová-Peck, J. (1984). A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Canadian Journal of Zoology, 62, 1150–1166.CrossRefGoogle Scholar
  55. Ross, H. H. (1974). Biological systematics. Addison-Wesley Publishing Company, Inc., 345 pp.Google Scholar
  56. Schwartz, J. H., & Maresca, B. (2006). Do molecular clocks run at all? A critique of molecular systematics. Biological Theory, 1(4), 357–371.CrossRefGoogle Scholar
  57. Sharov, A. G. (1957). Peculiar Paleozoic wingless insects of the new order Monura (Insecta, Apterygota. Doklady Akademii Nauk USSR, 115, 796–798.Google Scholar
  58. Sharov, A. G. (1966). Basic arthropodan stock. London: Pergamon Press, 271 p.Google Scholar
  59. Shear, W. A., & Kukalová-Peck, J. (1990). The ecology of Paleozoic terrestrial arthropods: The fossil evidence. Canadial Journal of Zoology, 68, 1807–1934.Google Scholar
  60. Shubin, N. H., Tabin, C., & Carroll, S. B. (1997). Fossils, genes and the evolution of animal limbs. Nature, 388, 639–648.PubMedCrossRefGoogle Scholar
  61. Smith, E. L. (1970). Biology and structure of some California bristletails and silverfish. Pan-Pacific Entomologist, 46, 212–225.Google Scholar
  62. Smith, E. L. (1988). Morphology and evolution of the hexapod head. In: Proceedings of the 18th International Congress on Entomology, Vancouver, 73 p.Google Scholar
  63. Snodgrass, R. E. (1935). Principles of insect morphology. New York: Mc Graw-Hill, 667 p.Google Scholar
  64. Stenzhorn, H. J. (1974). Experimentelle Untersuchungen zur Entwicklung des Lymantria dispar L. (Lepidoptera). Wilhelm Roux Archive, Entwicklungen Mechanische Organisation, 175, 65–86.CrossRefGoogle Scholar
  65. Šulc, K. (1927). Das Tracheensystem von Lepisma (Thysanura) und Phylogenie der Pterygogenea. Acta Societatis Scientifica Naturalis Moravicae, 4(7/39), 108 p.Google Scholar
  66. Tower, W. L. (1903). The origin and development of the wings in Coleoptera. Zoologisches Jahrbuch, Anatomy, 17, 517–572.Google Scholar
  67. Wägele, J. W. (1993). Rejection of the “Uniramia” hypothesis and implications of the Mandibulata concept. Zoologisches Jahrbuch, Systematik, 120, 253–288.Google Scholar
  68. Wägele, J. W. (1996). First principles of phylogenetic systematics, a basis of numerical methods used for morphological and molecular characters. Vie Milieu, 46(2), 125–138.Google Scholar
  69. Webster, M. (2007). A Cambrian peak in morphological variation within trilobite species. Science, 317, 499–502.PubMedCrossRefGoogle Scholar
  70. Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London, B, 359, 571–583.CrossRefGoogle Scholar
  71. Wheeler, W. C., Whiting, M., Wheeler, Q. D., & Carpenter, J. M. (2000). The phylogeny of the extant hexapod orders. Cladistics, 17, 13–169.Google Scholar
  72. Williams, J. A., & Carroll, S. B. (1993). The origin, patterning and evolution of insect appendages. Biological Essays, 15, 567–577.Google Scholar
  73. Willmann, R. (1997). Advances and problems in insect phylogeny. Arthropod relationships. In: R. A. Fortey & R. H. Thomas (Eds.) London: Chapman & Hall, pp. 69–279.Google Scholar
  74. Wootton, R. J., & Kukalová-Peck, J. (2000). Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biological Reviews, 75, 129–167.PubMedCrossRefGoogle Scholar
  75. Wootton, R. J., Kukalová-Peck, J., Newman, D. J. S., & Muzon, P. (1998). Smart engineering in the Mid-Carboniferous: how well could Palaeozoic dragonflies fly? Science, 282, 749–751.PubMedCrossRefGoogle Scholar
  76. Yeates, D. K. (1995). Groundplans and exemplars: path of the tree of life. Cladistics, 11, 343–357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Earth SciencesCarleton UniversityOttawaCanada

Personalised recommendations