Skip to main content
Log in

Paleontological Patterns, Macroecological Dynamics and the Evolutionary Process

  • Synthesis
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Here we consider evolutionary patterns writ large in the fossil record. We argue that Darwin recognized but downgraded or de-emphasized several of these important patterns, and we consider what a renewed emphasis on these patterns can tell us about the evolutionary process. In particular, one of the key patterns we focus on is the role geographic isolation plays in fomenting evolutionary divergence; another one of the key patterns is stasis of species; the final pattern is turnovers, which exist at several hierarchical scales, including regional ecosystem replacement and pulses of speciation and extinction. We consider how each one of these patterns are related to the dynamic of changing ecological and environmental conditions over time and also investigate their significance in light of other concepts including punctuated equilibria and hierarchy theory. Ultimately, we tie each of these patterns into a framework involving macroecological dynamics and the important role environmental change plays in shaping evolution from the micro- to macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108

    CAS  PubMed  Google Scholar 

  • Ausich, W. I. (1997). Regional encrinites: A vanished lithofacies. In C. E. Brett & G. C. Baird (Eds.), Paleontological events: Stratigraphic, ecological, and evolutionary implications. New York: Columbia University Press

    Google Scholar 

  • Avise, JC. (1994). Molecular markers, natural history, and evolution. New York: Chapman and Hall

    Google Scholar 

  • Barrett, P. H., Gautrey, P. J., Herbert, S., Kohn, D., & Smith, S. (1987). Charles Darwin’s notebooks, 1836–1844. Ithaca, New York: Cornell University Press

    Google Scholar 

  • Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11–21

    Google Scholar 

  • Bennett, K. D. (1997). Evolution and ecology. New York: Cambridge University Press

    Google Scholar 

  • Benton, M. J., & Pearson, P. N. (2001). Speciation in the fossil record. Trends in Ecology and Evolution, 16, 405–411

    PubMed  Google Scholar 

  • Bowler, P. J. (1996). Life’s splendid drama. Chicago: University of Chicago Press

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1995). Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In D. H. Erwin & R. L. Anstey (Eds.), New approaches to speciation in the fossil record (pp. 285–315). New York: Columbia University Press, New York

    Google Scholar 

  • Brochu, CA. (1997). Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Systematic Biology, 46, 479–522

    PubMed  CAS  Google Scholar 

  • Brogniart, A. (1829). General considerations on the nature of the vegetation which covered the surface of the earth at the different epochs of the formation of its crust. Edinburgh New Philosophical Journal, 6, 349–371

    Google Scholar 

  • Brooks, D. R., & McLennan, D. A. (2002). The nature of diversity: An evolutionary voyage of discovery. Chicago: University of Chicago Press

    Google Scholar 

  • Brown, J. H. (1995). Macroecology. Chicago: University of Chicago Press

    Google Scholar 

  • Browne, J. (1983). The secular ark: Studies in the history of biogeography. New Haven: Yale University Press

    Google Scholar 

  • Burton, C. J., & Eldredge, N. (1974). Two new subspecies of Phacops rana (Trilobita) from the Middle Devonian of north-west Africa. Palaeontology, 17, 349–363

    Google Scholar 

  • Cartwright, P. (2003). Developmental insights into the origin of complex colonial hydrozoans. Journal of Integrative and Comparative Biology, 43, 82–86

    Google Scholar 

  • Cheetham, A. H. (2001). Evolutionary stasis vs. change. In D. E. G. Briggs & R. Crowther (Eds.), Palaeobiology II. Oxford: Blackwell Scientific Press

    Google Scholar 

  • Claridge M. F., Dawah H. A., & Wilson M. R. (Eds.) (1997). Species: The units of biodiversity. London: Chapman and Hall

    Google Scholar 

  • Coleman D. C., & Hendrix P. F. (Eds.) (2000). Invertebrates as webmasters in ecosystems. New York: CABI Publishing

    Google Scholar 

  • Cracraft, J. (1989). Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In D. Otte & J. A. Endler (Eds.) Speciation and its consequences (pp 28–59). Sunderland, Mass: Sinauer

    Google Scholar 

  • Cuvier, G. (1812). Discours sur les Révolutions de la Surface du Globe, Paris

  • Darwin, C. (1840). Pencil sketch. In Darwin, F. (1909), Foundations of the origins of Species (pp 1–53). Cambridge: Cambridge University Press

  • Darwin, C. (1859). On the origin of species by means of natural selection; or the preservation of favored races in the struggle for life (Reprinted 1st ed.). Cambridge, Mass.: Harvard University Press

  • Darwin, F. (1909), Foundations of the origins of species. Cambridge: Cambridge University Press

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. New York: Oxford University Press

    Google Scholar 

  • De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp 57–75). New York: Oxford University Press

    Google Scholar 

  • DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., & Bobe, R. (2004). Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology and Systematics, 35, 285–322

    Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press Reprint Edition

    Google Scholar 

  • Ehrlich, P., & Raven, P. H. (1969). Differentiation of populations. Science, 165, 1228–1232

    PubMed  CAS  Google Scholar 

  • Eldredge, N. (1971). The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25, 159–167

    Google Scholar 

  • Eldredge, N. (1973). Systematics of Lower and lower Middle Devonian species of the trilobite Phacops Emmrich in North America. Bulletin of the American Museum of Natural History, 151, 285–338

    Google Scholar 

  • Eldredge, N. (1985). Unfinished synthesis. New York: Oxford University Press

    Google Scholar 

  • Eldredge, N. (1989). Macroevolutionary dynamics. New York: McGraw Hill, New York

    Google Scholar 

  • Eldredge, N. (1995). Reinventing darwin. New York: J. Wiley & Sons, New York

    Google Scholar 

  • Eldredge, N. (1996). Hierarchies in macroevolution. In D Jablonski, D. H. Erwin & J. H. Lipps (Eds.), Evolutionary palaeobiology (pp 42–61). Chicago: University of Chicago Press

    Google Scholar 

  • Eldredge, N. (2003). The sloshing bucket: How the physical realm controls evolution. In J. P. Crutchfield & P Schuster (Eds.), Evolutionary dynamics: Exploring the interplay of selection, accident, neutrality, and function (pp 3–32). Oxford: Oxford University Press

    Google Scholar 

  • Eldredge, N. (2005). Darwin: Discovering the tree of life. New York: W. W. Norton

    Google Scholar 

  • Eldredge, N., & Branisa, L. (1980). Calmoniid trilobites of the Lower Devonian Scaphiocoelia Zone of Bolivia, with remarks on related species. Bulletin of the American Museum of Natural History, 165, 181–289

    Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press

    Google Scholar 

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Schopf, T. J. (ed). Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper

    Google Scholar 

  • Eldredge, N., & Salthe, S. N. (1984). Hierarchy and evolution. Oxford Surveys of Evolutionary Biology, 1, 184–208

    Google Scholar 

  • Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets S., Jablonski D, Jackson, J. B. C, Lenski, R. E., Lieberman, B. S., McPeek, M. A., & Miller W. III. (2005). The dynamics of evolutionary stasis. Paleobiology, 31 (Suppl), 133–145

    Google Scholar 

  • Frakes, L. A., Francis, J. E., & Syktus, J. I. (1992). Climate modes of the phanerozoic. Cambridge: Cambridge University Press

    Google Scholar 

  • Ghiselin, M. T. (1987). Species concepts, individuality and objectivity. Biology and Philosophy, 2, 127–143

    Google Scholar 

  • Gilpin, M., & Hanski, I. (1991). Metapopulation dynamics: Empirical and theoretical investigations. London: Academic Press

    Google Scholar 

  • Gould, S. J. (1965). Is uniformitarianism necessary? American Journal of Science, 263, 223–228

    Article  Google Scholar 

  • Gould, S. J., (1989). Wonderful life. New York: W.W. Norton

    Google Scholar 

  • Gould, S. J., (1996). Full house. New York: Harmony Books

    Google Scholar 

  • Gould, S. J., (2002). The structure of evolutionary theory. Cambridge, Mass.: Harvard University Press

    Google Scholar 

  • Gould, S. J., & Eldredge N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3, 115–151

    Google Scholar 

  • Gould, S. J., & Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227

    PubMed  CAS  Google Scholar 

  • Grinnell, G. (1974). The rise and fall of Darwin’s first theory of transmutation. Journal of Historical Biology, 7, 259–273

    CAS  Google Scholar 

  • Hall, B. K. (2003). Evolutionary developmental biology, 2nd ed. New York: Springer

  • Hallam, A. (1981). Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In G. Nelson & D. E. Rosen (Eds.), Vicariance biogeography: A Critique (pp. 303–330). New York: Columbia University Press

    Google Scholar 

  • Hallam, A., & Wignall, P. B. (1997). Mass extinctions and their aftermath. Oxford: Oxford University Press

    Google Scholar 

  • Hey, J. (2001). Genes, categories, and species: The evolutionary and cognitive causes of the species problem. Oxford: Oxford University Press

    Google Scholar 

  • Hooker, J. D. (1853). The botany of the antarctic voyage of H. M. discovery ships “Erebus” and “Terror” in the years 1839–1843. II. Flora Novae-Zelandiae. Part I. Flowering plants. London: Lovell Reeve

    Google Scholar 

  • Howard, D. J., & Berlocher, S. H. (Eds.) (1998). Endless forms: Species and speciation. Oxford: Oxford University Press

    Google Scholar 

  • Hull, D. L. (1973). Darwin and his critics. Chicago: University of Chicago Press

    Google Scholar 

  • Huntley, B., & Webb T. III (1989). Migration: species’ response to climatic variations caused by changes in the earth’s orbit. Journal of Biogeography, 16, 5–19

    Google Scholar 

  • Huxley J., Hardy A. C., & Ford, E. B. (Eds.) (1954). Evolution as a process. London: George Allen and Unwin

    Google Scholar 

  • Ivany, L. C., & Schopf, K. M. (Eds.) (1996). New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 127 (Special Issue), 1–359

  • Jablonski, D. (2004). The evolutionary role of mass extinctions: disaster, recovery and something in-between. In Taylor, P. D. (Ed.), Extinctions in the history of life (pp. 151–177). Cambridge: Cambridge University Press

    Google Scholar 

  • Jackson, J. B. C, & Cheetham, A. H. (1999). Tempo and mode of speciation in the sea. Trends in Ecology and Evolution, 14, 72–77

    PubMed  Google Scholar 

  • Janzen, D. H. (1985). On ecological fitting. Oikos, 45, 308–310

    Google Scholar 

  • Kinch, M. P. (1980). Geographical distribution and the origin of life: the development of early nineteenth century British explanations. Journal of the History of Biology, 13, 91–119

    PubMed  CAS  Google Scholar 

  • Kottler, M. J. (1978). Charles Darwin’s biological species concept and theory of geographic speciation: the transmutation notebooks. Annals of Science, 35, 275–297

    Google Scholar 

  • Lieberman, B. S. (1992). An extension of the SMRS concept into a phylogenetic context. Evolutionary Theory, 10, 157–161

    Google Scholar 

  • Lieberman, B. S. (1993). Systematics and biogeography of the “Metacryphaeus Group,” (Trilobita, Devonian) with a comment on adaptive radiations and the geological history of the Malvinokaffric Realm. Journal of Paleontology, 67, 549–570

    Google Scholar 

  • Lieberman, B. S. (1994). Evolution of the trilobite subfamily Proetinae and the origin, evolutionary affinity, and extinction of the Middle Devonian proetid fauna of Eastern North America. Bulletin of the American Museum of Natural History, 223, 1–176

    Google Scholar 

  • Lieberman, B. S. (1997). Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25, 1039–1042

    Google Scholar 

  • Lieberman, B. S. (1999). Turnover pulse in trilobites during the Acadian Orogeny. In: Proceedings of the Appalachian biogeography symposium. Virginia Museum of Natural History Special Publications Number, vol. 7, pp. 99–108

  • Lieberman, B. S. (2000). Paleobiogeography. New York: Plenum/Kluwer Academic Press, New York

    Google Scholar 

  • Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings of the Royal Society of London, Biological Sciences, 268, 1707–1714

    CAS  Google Scholar 

  • Lieberman, B. S. (2003a). Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology and Systematics, 34, 51–69

    Google Scholar 

  • Lieberman, B. S. (2003b). Biogeography of the Cambrian radiation: Deducing geological processes from trilobite evolution. Special Papers in Palaeontology, 70, 59–72

    Google Scholar 

  • Lieberman, B. S. (2003c). Taking the pulse of the Cambrian radiation. Journal of Integrative and Comparative Biology, 43, 229–237

    Google Scholar 

  • Lieberman, B. S. (2005). Geobiology and palaeobiogeography: tracking the coevolution of the Earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 23–33

    Google Scholar 

  • Lieberman, B. S., & Eldredge, N. (1996). Trilobite biogeography in the Middle Devonian: Geological processes and analytical methods. Paleobiology, 22(1), 66–79

    Google Scholar 

  • Lieberman, B. S., & Kloc, G. (1997). Evolutionary and biogeographic patterns in the Asteropyginae (Trilobita, Devonian). Bulletin of the American Museum of Natural History, 232, 1–127

    Google Scholar 

  • Lieberman, B. S., Brett, C. E., & Eldredge, N. (1995). Patterns and processes of stasis in two species lineages from the Middle Devonian of New York State. Paleobiology, 21(1), 15–27

    Google Scholar 

  • Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and Biogeography of the “Malvinella Group,” Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65, 824–843

    Google Scholar 

  • Lynch, J. D. (1989). The gauge of speciation: on the frequencies of modes of speciation. In D Otte & J. A. Endler (Eds)., Speciation and its consequences. (pp. 527–553). Sunderland, Mass: Sinauer

    Google Scholar 

  • Matthew, W. D. (1915). Climate and evolution. Annals of the New York Academy of Sciences, 24, 171–318

    Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problems. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds)., Species: The units of biodiversity. (pp. 381–424). London: Chapman and Hall

    Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Dover Press

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge, Mass: Harvard University Press

    Google Scholar 

  • Mayr, E. (1976). Evolution and the diversity of life: Selected essays. Cambridge, Mass: Harvard University Press

    Google Scholar 

  • Mayr, E. (1982). The growth of biological Thought. Cambridge, Mass.: Harvard University Press

    Google Scholar 

  • McKinnon, J. S., & Rundle, H. D. (2002). Speciation in nature: the threespine stickleback model systems. Trends in Ecology and Systematics, 17, 480–488

    Google Scholar 

  • Meert, J. G., & Lieberman, B. S. (2004). A palaeomagnetic and palaeobiogeographic perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society of London, 161(1), 1–11

    Google Scholar 

  • Miller, W. III. (1986). Paleoecology of benthic community replacement. Lethaia, 19(2), 225–231

    Google Scholar 

  • Miller, W. III. (1996). Ecology of coordinated stasis. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 177–190

    Google Scholar 

  • Miller, W. III. (2001). The structure of species, outcomes of speciation and the ‘species problem’: ideas for paleobiology. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1), 1–10

    Google Scholar 

  • Miller, W. III. (2002a). Regional ecosystems and the origin of species. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 225, 137–156

    Google Scholar 

  • Miller, W. III. (2002b). Succession and succession-like processes. In Eldredge N (Ed). Life on earth: An encyclopedia of biodiversity, ecology, and evolution (pp. 671–677). Santa Barbara: ABC-CLIO

    Google Scholar 

  • Miller, W. III. (2003). A place for phyletic evolution within the theory of punctuated equilibria: Eldredge pathways. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2003, 463–476

    Google Scholar 

  • Miller, W. III. (2004). Assembly of large ecologic systems: macroeolutionary connections. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2004, 629–640

    Google Scholar 

  • Miller, W. III. (2005). The paleobiology of rarity: some new ideas. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2005, 683–693

    Google Scholar 

  • Miller, W. III. (2006). What every paleontologist should know about species: new concepts and questions. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte., 2006, 557–576

    Google Scholar 

  • Norell, M. A., & Novacek, M. J. (1992). The fossil record and evolution: comparing cladistic and paleontologicc evidence for vertebrate history. Science, 255, 1690–1693

    CAS  PubMed  Google Scholar 

  • Osborn, H. F. (1906). The causes of extinction of Mammalia. American Naturalist, 40, 829–859

    Google Scholar 

  • Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., & McPeek, M. A. (2004). Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, USA, 101, 6536–6541

    CAS  Google Scholar 

  • Polis G. A., Power M. E., & Huxel G. R. (Eds.) (2004). Food webs at the landscape level. University of Chicago Press, Chicago, 548 pp

    Google Scholar 

  • Pulliam, H. R. (1996). Sources and sinks: empirical evidence and population consequences. In O. E. Rhodes, R. K. Chesser, & M. H. Smith (Eds.), Population dynamics in ecological space and time (pp. 45–69). Chicago: University of Chicago Press

    Google Scholar 

  • Raup, D. (1989). Extinction: bad genes or bad luck? New York: W.W. Norton

    Google Scholar 

  • Richardson, R. A. (1981). Biogeography and the genesis of Darwin’s ideas on transmutation. Journal of Historical Biology, 14(1), 1–41

    Google Scholar 

  • Ruddiman, W. F. (2001). Earth’s climate: Past and future. New York: W. H. Freeman

    Google Scholar 

  • Salthe S. (1985). Evolving hierarchical systems. New York: Columbia University Press

    Google Scholar 

  • Salthe, S. N. (1993). Development and evolution: Complexity and change in biology. Cambridge, Mass.: MIT Press

    Google Scholar 

  • Schluter, D. (1996). Ecological causes of adaptive radiation. American Naturalist, 148, S40–S64

    Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press

    Google Scholar 

  • Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University Press

    Google Scholar 

  • Stanley, S. M., & Yang, X. (1987). Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology, 13, 113–139

    Google Scholar 

  • Sulloway, F. J. (1979). Geographic isolation in Darwin’s thinking: the vicissitudes of a crucial idea. In W. Coleman & C. Limoges (Eds.), Studies in the history of biology (pp. 23–65). Baltimore: Johns Hopkins University Press

    Google Scholar 

  • Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13, 329–332

    Google Scholar 

  • Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology and Evolution, 16, 330–343

    PubMed  Google Scholar 

  • Ulanowicz, R. E. (1997). Ecology, the ascendent perspective. New York: Columbia University Pres

    Google Scholar 

  • Von Buch, L. (1825). Physicalische Beschreibung der Canarischen Inseln

  • Vrba, E. S. (1980). Evolution, species and fossils: how does life evolve? South African Journal of Science, 76, 61–84

    Google Scholar 

  • Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236

    Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300

    Google Scholar 

  • Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28

    Google Scholar 

  • Vrba, E. S. (1993). Turnover-pulses, the Red Queen, and related topics. American Journal of Science, 293, 418–452

    Article  Google Scholar 

  • Vrba, E. S. (1995). On the connections between paleoclimate and evolution. In E. S. Vrba, G. H. Denton, T. C. Partridge, & L. H. Burckle (Eds.), Paleoclimate and evolution with emphasis on human origins (pp. 24–45). New Haven: Yale University Press

    Google Scholar 

  • Vrba, E. S. (2004). Ecology, development, and evolution: perspectives from the fossil record. In B. K. Hall, R. D. Pearson, & G. B. Müller (Eds.), Environment, development, and evolution: toward a synthesis (pp. 85–105). Cambridge, Mass.: MIT Press

    Google Scholar 

  • Wallace, A. R. (1855). On the law which has regulated the introduction of new species. Annals of the Magazine of Natural History, 2nd Series, 16, 184–196

    Google Scholar 

  • Wallace, A. R. (1857). On the natural history of the Aru Islands. Annals of the Magazine of Natural History, 2nd Series, 20, 473–485

    Google Scholar 

  • Wallace, A. R. (1858). Note on the theory of permanent and geographical varieties. Zoologist, 16, 5887–5888

    Google Scholar 

  • Wallace, A. R. (1876). The geographical distribution of animals. London: MacMillan and Company, London

    Google Scholar 

  • Wilson R. A. (Ed). (1999). Species: New interdisciplinary essays. Cambridge, Mass.: MIT Press

    Google Scholar 

  • Wheeler Q. D., & Meier R. (Eds.) (2000). Species concepts and phylogenetic theory: A debate. New York: Columbia University Press

    Google Scholar 

  • Wignall, P. B. (2004). Causes of mass extinctions. In PD Taylor (Ed.) Extinctions in the history of life (pp. 119–150). Cambridge: Cambridge University Press

    Google Scholar 

  • Wright, S. W. (1931). Evolution in Mendelian populations. Genentics, 16, 97–159

    CAS  Google Scholar 

  • Wray, G. A., Levinton, J. S., & Shapiro, L. H. (1996). Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science, 274, 568–573

    CAS  Google Scholar 

Download references

Acknowledgments

BSL thanks NSF EAR-0518976, NASA Astrobiology NNG04GM41G, and a Self Faculty Award for supporting his research. All three of us are grateful to the National Center for Ecological Analysis and Synthesis (NCEAS), University of California, Santa Barbara, for providing a proving ground for these ideas; they are listed in the bibliographic citation of Eldredge et al. (2005). Steve Thurston prepared the figures. We thank two anonymous reviewers, Benedikt Hallgrimsson, Neil Blackstone, and Warren Allmon for comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, B.S., Miller, W. & Eldredge, N. Paleontological Patterns, Macroecological Dynamics and the Evolutionary Process. Evol. Biol. 34, 28–48 (2007). https://doi.org/10.1007/s11692-007-9005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-007-9005-4

Keywords

Navigation