Skip to main content
Log in

Acide arachidonique et prostaglandines : impact sur la formation des adipocytes blancs, bruns et brites/beiges

Arachidonic acid and prostaglandins: impact on white, brown and brite/beige adipocyte formation

  • Article / Article
  • Published:
Obésité

Résumé

Les adipocytes blancs stockent et libèrent l’énergie à la demande alors que les adipocytes brites (ou beiges) et bruns la dissipent sous forme de chaleur. Nous décrivons ici les effets de l’acide arachidonique (ARA) et de ses métabolites sur la formation de ces adipocytes, en mettant en avant la complexité et la dualité de ces effets. Ces données démontrent l’importance de la biodisponibilité de l’ARA dans la biologie du tissu adipeux et les pathologies qui lui sont associées.

Abstract

White adipocytes store and release energy upon request whereas brown and brite (or beige) adipocytes dissipate it as heat. Herein, we describe the effects of arachidonic acid (ARA) and its metabolites on the formation of white and brites adipocytes, highlighting the complexity and duality of these effects. These observations demonstrate the importance of the bioavailability of ARA in the adipose tissue biology and its associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Muhlhausler BS, Ailhaud GP (2013) Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes 20:56–61

    Article  CAS  PubMed  Google Scholar 

  2. Enerback S, Jacobsson A, Simpson EM, et al (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–4

    Article  CAS  PubMed  Google Scholar 

  3. Virtanen KA, van Marken Lichtenbelt WD, Nuutila P (2013) Brown adipose tissue functions in humans. Biochim Biophys Acta 1831:1004–8

    Article  CAS  PubMed  Google Scholar 

  4. Cypess AM, Lehman S, Williams G, et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–52

    Article  CAS  PubMed  Google Scholar 

  6. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–8

    Article  CAS  PubMed  Google Scholar 

  7. Virtanen KA, Lidell ME, Orava J, et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–25

    Article  CAS  PubMed  Google Scholar 

  8. Feldmann HM, Golozoubova V, Cannon B, et al (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–9

    Article  CAS  PubMed  Google Scholar 

  9. Barbatelli G, Murano I, Madsen L, et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–53

    Article  CAS  PubMed  Google Scholar 

  10. Petrovic N, Walden TB, Shabalina IG, et al (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–64

    Article  CAS  PubMed  Google Scholar 

  11. Shabalina IG, Petrovic N, de Jong JM, et al (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–203

    Article  CAS  PubMed  Google Scholar 

  12. Ricquier D, Bouillaud F (2000) Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol 529 Pt 1:3–10

    Article  Google Scholar 

  13. Rosenwald M, Wolfrum C (2014) The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3:4–9

    Article  PubMed  Google Scholar 

  14. Lee YH, Petkova AP, Konkar AA, et al (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29:286–99

    Article  CAS  PubMed  Google Scholar 

  15. Rosenwald M, Perdikari A, Rulicke T, et al (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–67

    Article  CAS  PubMed  Google Scholar 

  16. Vishvanath L, MacPherson KA, Hepler C, et al (2015) Pdgfrbeta Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice. Cell Metab

    Google Scholar 

  17. Bartelt A, Bruns OT, Reimer R, et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–5

    Article  CAS  PubMed  Google Scholar 

  18. Jespersen NZ, Larsen TJ, Peijs L, et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans? Cell Metab 17:798–805

    Article  CAS  PubMed  Google Scholar 

  19. Sharp LZ, Shinoda K, Ohno H, et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7:e49452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu J, Bostrom P, Sparks LM, et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pisani DF, Djedaini M, Beranger GE, et al (2011) Differentiation of Human Adipose-Derived Stem Cells into “Brite” (Brownin- White) Adipocytes. Front Endocrinol (Lausanne) 2:87

    CAS  Google Scholar 

  22. Langin D (2010) Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochim Biophys Acta 1801:372–6

    Article  CAS  PubMed  Google Scholar 

  23. Ailhaud G, Massiera F, Weill P, et al (2006) Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45:203–36

    Article  CAS  PubMed  Google Scholar 

  24. Javadi M, Everts H, Hovenier R, et al (2004) The effect of six different C18 fatty acids on body fat and energy metabolism in mice. Br J Nutr 92:391–9

    Article  CAS  PubMed  Google Scholar 

  25. Massiera F, Barbry P, Guesnet P, et al (2010) A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations? J Lipid Res 51:2352–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ailhaud G, Guesnet P (2004) Fatty acid composition of fats is an early determinant of childhood obesity: a short review and an opinion. Obes Rev 5:21–6

    Article  CAS  PubMed  Google Scholar 

  27. Savva SC, Chadjigeorgiou C, Hatzis C, et al (2004) Association of adipose tissue arachidonic acid content with BMI and overweight status in children from Cyprus and Crete. Br J Nutr 91:643–9

    Article  CAS  PubMed  Google Scholar 

  28. Simopoulos AP (2002) The importance of the ratio of omega- 6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–79

    Article  CAS  PubMed  Google Scholar 

  29. Gaillard D, Negrel R, Lagarde M, et al (1989) Requirement and role of arachidonic acid in the differentiation of pre-adipose cells. Biochem J 257:389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Massiera F, Saint-Marc P, Seydoux J, et al (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44:271–9

    Article  CAS  PubMed  Google Scholar 

  31. Aubert J, Saint-Marc P, Belmonte N, et al (2000) Prostacyclin IP receptor up-regulates the early expression of C/EBPbeta and C/ EBPdelta in preadipose cells. Mol Cell Endocrinol 160:149–56.

    Article  CAS  PubMed  Google Scholar 

  32. Forman BM, Tontonoz P, Chen J, et al (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–12

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez AM, Elabd C, Delteil F, et al (2004) Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 315:255–63

    Article  CAS  PubMed  Google Scholar 

  34. Jia B, Madsen L, Petersen RK, et al (2012) Activation of protein kinase a and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells. PLoS ONE 7:e34114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madsen L, Pedersen LM, Liaset B, et al (2008) cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids. J Biol Chem 283:7196–205

    Article  CAS  PubMed  Google Scholar 

  36. Petersen RK, Jorgensen C, Rustan AC, et al (2003) Arachidonic acid-dependent inhibition of adipocyte differentiation requires PKA activity and is associated with sustained expression of cyclooxygenases. J Lipid Res 16:16

    Google Scholar 

  37. Liu L, Clipstone NA (2007) Prostaglandin F2alpha inhibits adipocyte differentiation via a G alpha q-calcium-calcineurin-dependent signaling pathway. J Cell Biochem 100:161–73

    Article  CAS  PubMed  Google Scholar 

  38. Nikolopoulou E, Papacleovoulou G, Jean-Alphonse F, et al (2014) Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. J Lipid Res 55:2479–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kringelholt S, Simonsen U, Bek T (2013) Dual effect of prostaglandins on isolated intraocular porcine ciliary arteries. Acta Ophthalmol 91:498–504

    Article  CAS  PubMed  Google Scholar 

  40. Borglum JD, Pedersen SB, Ailhaud G, et al (1999) Differential expression of prostaglandin receptor mRNAs during adipose cell differentiation. Prostaglandins Other Lipid Mediat 57:305–17.

    Article  CAS  PubMed  Google Scholar 

  41. Vassaux G, Gaillard D, Darimont C, et al (1992) Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2: physiological implications. Endocrinology 131:2393–8.

    CAS  PubMed  Google Scholar 

  42. Madsen L, Petersen RK, Sorensen MB, et al (2003) Adipocyte differentiation of 3T3-L1 preadipocytes is dependent on lipoxygenase activity during the initial stages of the differentiation process. Biochem J 375:539–49

    Article  CAS  PubMed  Google Scholar 

  43. Shillabeer G, Kumar V, Tibbo E, et al (1998) Arachidonic acid metabolites of the lipoxygenase as well as the cyclooxygenase pathway may be involved in regulating preadipocyte differentiation. Metabolism 47:461–6.

    Article  CAS  PubMed  Google Scholar 

  44. Pisani DF, Ghandour RA, Beranger GE, et al (2014) The omega6- fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 3:834–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Madsen L, Pedersen LM, Lillefosse HH, et al (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS ONE 5:e11391

  46. Vegiopoulos A, Muller-Decker K, Strzoda D, et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–61

    Article  CAS  PubMed  Google Scholar 

  47. Fjaere E, Aune UL, Roen K, et al (2014) Indomethacin Treatment Prevents High Fat Diet-induced Obesity and Insulin Resistance but Not Glucose Intolerance in C57BL/6J Mice. J Biol Chem 289:16032–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elabd C, Chiellini C, Carmona M, et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–60

    Article  CAS  PubMed  Google Scholar 

  49. Yang H, Cheng J, Song Z, et al (2013) The anti-adipogenic effect of PGRN on porcine preadipocytes involves ERK1,2 mediated PPARgamma phosphorylation. Mol Biol Rep 40:6863–72

    Article  CAS  PubMed  Google Scholar 

  50. Bayindir I, Babaeikelishomi R, Kocanova S, et al (2015) Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning. Front Endocrinol (Lausanne) 6:129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. -Z. Amri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandour, R.A., Pisani, D.F. & Amri, E.Z. Acide arachidonique et prostaglandines : impact sur la formation des adipocytes blancs, bruns et brites/beiges. Obes 11, 159–167 (2016). https://doi.org/10.1007/s11690-016-0525-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-016-0525-x

Mots clés

Keywords

Navigation