Skip to main content
Log in

SHP2 : une cible potentielle d’intérêt dans l’obésité et ses complications métaboliques ?

SHP2: a possible target of interest in obesity and its metabolic complications?

  • Article / Article
  • Published:
Obésité

Résumé

SHP2 est une protéine ubiquitaire qui appartient à la famille très conservée au cours de l’évolution des protéines tyrosine phosphatases (PTP). Les données accumulées depuis sa découverte lui confèrent des rôles majeurs dans la régulation de multiples voies de signalisation dépendantes des tyrosine-kinases qui lui permettent de contrôler des processus cellulaires clés tels que la prolifération, la différenciation, la survie ou le métabolisme énergétique. L’importance de SHP2 dans la physiologie cellulaire s’illustre notamment par les conséquences létales de son inactivation dans divers organismes et l’impact de sa délétion ciblée sur le développement et la fonction de nombreux organes. En particulier, SHP2 apparaît comme un régulateur majeur de différents aspects du métabolisme énergétique en contrôlant à la fois le développement du tissu adipeux, la balance énergétique ou l’homéostasie glucidique. Ces vingt dernières années, l’étude de SHP2 a suscité un intérêt grandissant avec la découverte de maladies génétiques causées par des mutations « gain de fonction » ou « perte de fonction » de cette phosphatase, qui conduisent, chez l’Homme, à des défauts de développement, à certains cancers, et qui pourraient aussi impacter le métabolisme énergétique.

Dans cette revue, nous présenterons les principaux rôles physiologiques de SHP2, en nous focalisant plus particulièrement sur la place qu’elle tient dans la régulation du métabolisme énergétique, puis nous aborderons les conséquences physiopathologiques de sa dérégulation chez l’Homme, en particulier en termes de perturbations métaboliques.

Abstract

SHP2 is a ubiquitous protein belonging to the evolutionary-conserved protein tyrosine phosphatases (PTP) family. Data accumulated since its discovery confer on SHP2 major roles in regulating multiple tyrosine kinase-dependent signaling pathways, which control key cellular processes, notably proliferation, differentiation, survival or energy metabolism. Thus, the lethal outcomes of SHP2 inactivation in various organisms, as well as the impacts of its targeted deletion on the development and/or function of numerous organs and tissues, highlight SHP2’s significance in cell physiology. In particular, SHP2 has been proved to be a major regulator of different aspects of energy metabolism, as it concurrently controls adipose tissue development, energy balance and carbohydrate/lipid homeostasis. Over the past two decades, SHP2 study has aroused a growing interest, with the discovery of genetic diseases caused by « gain-of-function » or « loss-of-function » mutations of this phosphatase, that result in Human in developmental defects, certain cancers, and could also affect energy metabolism.

In this review, we summarize the main physiological roles of SHP2, with a particular focus on its function in energy metabolism regulation, and then describe the pathophysiological consequences of its deregulation in human diseases, notably in term of metabolism imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Adachi M, Fischer EH, Ihle J, et al (1996) Mammalian SH2- containing protein tyrosine phosphatases. Cell. 85: 15.

    Article  CAS  PubMed  Google Scholar 

  2. Neel BG, Gu H and Pao L (2003) The’ Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28: 284–93.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang ZY (2003) Mechanistic studies on protein tyrosine phosphatases. Prog Nucleic Acid Res Mol Biol. 73: 171–220.

    Article  CAS  PubMed  Google Scholar 

  4. Barford D and Neel BG (1998) Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure. 6: 249–54.

    Article  CAS  PubMed  Google Scholar 

  5. Hof P, Pluskey S, Dhe-Paganon S, et al (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell. 92: 441–50.

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon MA and Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell. 141: 1117–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bennett AM, Tang TL, Sugimoto S, et al (1994) Proteintyrosine- phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. USA. 91: 7335–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cunnick JM, Dorsey JF, Munoz-Antonia T, et al (2000) Requirement of SHP2 binding to Gab1 for MAPK activation in response to LPA and EGF. J. Biol. Chem. 275: 13842–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cunnick JM, Meng S, Ren Y, et al (2002) Regulation of the mitogen-activated protein kinase signaling pathway by SHP2. J. Biol. Chem. 277: 9498–504.

    Article  CAS  PubMed  Google Scholar 

  10. Dance M, Montagner A, Salles JP, et al (2008) The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell. Signal. 20: 453–9.

    Article  CAS  PubMed  Google Scholar 

  11. Saxton TM, Henkemeyer M, Gasca S, et al (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. Embo J. 16: 2352–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Tang TL, Freeman RM, Oreilly AM, et al (1995) The SH2- containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development. Cell. 80: 473–83.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang SQ, Tsiaras WG, Araki T, et al (2002) Receptor-specific regulation of phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2. Mol. Cell. Biol. 22: 4062–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Huang YS, Cheng CY, Chueh SH, et al (2012) Involvement of SHP2 in focal adhesion, migration and differentiation of neural stem cells. Brain Dev. 34: 674–84.

    Article  PubMed  Google Scholar 

  15. Fukunaga K, Noguchi T, Takeda H, et al (2000) Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J Biol Chem. 275: 5208–13.

    Article  CAS  PubMed  Google Scholar 

  16. Langdon Y, Tandon P, Paden E, et al (2012) SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton. Development. 139: 948–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xu D and Qu CK (2008) Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci. 13: 4925–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Zito CI, Qin H, Blenis J, et al (2007) SHP-2 regulates cell growth by controlling the mTOR/S6 kinase 1 pathway. J Biol Chem. 282: 6946–53.

    Article  CAS  PubMed  Google Scholar 

  19. Agazie YM and Hayman MJ (2003) Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell. Biol. 23: 7875–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bard-Chapeau EA, Yuan J, Droin N, et al (2006) Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol. Cell. Biol. 26: 4664–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cleghon V, Feldmann P, Ghiglione C, et al (1998) Opposing actions of Csw and RasGAP modulate the strength of torso RTK signaling in the drosophila terminal pathway. Cell. 2: 719–27.

    CAS  Google Scholar 

  22. De Rocca Serra-Nedelec A, Edouard T, Treguer K, et al (2012) Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature. Proc Natl Acad Sci U S A. 109: 4257–62.

    Article  PubMed  Google Scholar 

  23. Montagner A, Yart A, Dance M, et al (2005) A novel role for Gab1 and SHP2 in EGF-induced Ras activation. J. Biol. Chem. 280: 5350–60.

    Article  CAS  PubMed  Google Scholar 

  24. Myers MG, Mendez R, Shi P, et al (1998) The COOHterminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J Biol Chem. 273: 26908–14.

    Article  CAS  PubMed  Google Scholar 

  25. Ouwens DM, van der Zon GC and Maassen JA (2001) Modulation of insulin-stimulated glycogen synthesis by Src Homology Phosphatase 2. Mol Cell Endocrinol. 175: 131–40.

    Article  CAS  PubMed  Google Scholar 

  26. Feng GS (2007) Shp2-mediated molecular signaling in control of embryonic stem cell selfrenewal and differentiation. Cell Res. 17: 37–41.

    Article  CAS  PubMed  Google Scholar 

  27. Grossmann KS, Rosario M, Birchmeier C, et al (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res. 106: 53–89.

    Article  CAS  PubMed  Google Scholar 

  28. Li C and Friedman JM (1999) Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96: 9677–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Allison MB and Myers MG, Jr. (2014) 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol. 223: T25–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhang EE, Chapeau E, Hagihara K, et al (2004) Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. U. S. A. 101: 16064–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Krajewska M, Banares S, Zhang EE, et al (2008) Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol. 172: 1312–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. do Carmo JM, da Silva AA, Ebaady SE, et al (2014) Shp2 signaling in POMC neurons is important for leptin’s actions on blood pressure, energy balance, and glucose regulation. Am J Physiol Regul Integr Comp Physiol. 307: R1438–47.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Salvi M, Stringaro A, Brunati AM, et al (2004) Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cell Mol Life Sci. 61: 2393–404.

    Article  CAS  PubMed  Google Scholar 

  34. Lee I, Pecinova A, Pecina P, et al (2010) A suggested role for mitochondria in Noonan syndrome. Biochim Biophys Acta. 1802: 275–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Xu D, Zheng H, Yu WM, et al (2013) Activating mutations in protein tyrosine phosphatase Ptpn11 (Shp2) enhance reactive oxygen species production that contributes to myeloproliferative disorder. PLoS One. 8: e63152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Zheng H, Li S, Hsu P, et al (2013) Induction of a Tumorassociated Activating Mutation in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhances Mitochondrial Metabolism, Leading to Oxidative Stress and Senescence. J Biol Chem. 288: 25727–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Duarte A, Poderoso C, Cooke M, et al (2012) Mitochondrial fusion is essential for steroid biosynthesis. PLoS One. 7: e45829.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Banno R, Zimmer D, De Jonghe BC, et al (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J. Clin. Invest. 120: 720–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. He Z, Zhang SS, Meng Q, et al (2012) Shp2 controls female body weight and energy balance by integrating leptin and estrogen signals. Mol Cell Biol. 32: 1867–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Matsuo K, Delibegovic M, Matsuo I, et al (2010) Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J. Biol. Chem. 285: 39750–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nagata N, Matsuo K, Bettaieb A, et al (2012) Hepatic SRC homology phosphatase 2 regulates energy balance in mice. Endocrinology. 153: 3158–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Uehara T, Suzuki K, Yamanaka H, et al (2007) SHP-2 positively regulates adipogenic differentiation in 3T3-L1 cells. Am J Mol Med. 19: 895–900.

    CAS  Google Scholar 

  43. He Z, Zhu HH, Bauler TJ, et al (2012) Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase. Proc Natl Acad Sci U S A. 110: E79–88.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Bettaieb A, Matsuo K, Matsuo I, et al (2011) Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis. Metabolism. 286: 9225–35.

    CAS  Google Scholar 

  45. Zhang SS, Hao E, Yu J, et al (2009) Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci USA 106: 7531–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Rocchi S, Tartare-Deckert S, Murdaca J, et al (1998) Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules. Mol. Endocrinol. 12: 914–23.

    Article  CAS  PubMed  Google Scholar 

  47. Hausdorff SF, Bennett AM, Neel BG, et al (1995) Different signaling roles of SHPTP2 in insulin-induced GLUT1 expression and GLUT4 translocation. J. Biol. Chem. 270: 12965–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yamauchi K, Ribon V, Saltiel AR, et al (1995) Identification of the major SHPTP2-binding protein that is tyrosine-phosphorylated in response to insulin. J. Biol. Chem. 270: 17716–22.

    Article  CAS  PubMed  Google Scholar 

  49. Ugi S, Maegawa H, Kashiwagi A, et al (1996) Expression of dominant negative mutant SHPTP2 attenuates phosphatidylinositol 3'-kinase activity via modulation of phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 271: 12595–602.

    Article  CAS  PubMed  Google Scholar 

  50. Milarski KL and Saltiel AR (1994) Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J. Biol. Chem. 269: 21239–43.

    CAS  PubMed  Google Scholar 

  51. Maegawa H, Kashiwagi A, Fujita T, et al (1996) SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates. Biochem Biophys Res Commun. 228: 122–7.

    Article  CAS  PubMed  Google Scholar 

  52. Mussig K, Staiger H, Fiedler H, et al (2005) Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1. J Biol Chem. 280: 32693–9.

    Article  PubMed  Google Scholar 

  53. Maegawa H, Hasegawa M, Sugai S, et al (1999) Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J Biol Chem. 274: 30236–43.

    Article  CAS  PubMed  Google Scholar 

  54. Princen F, Bard E, Sheikh F, et al (2009) Deletion of Shp2 Tyrosine Phosphatase in Muscle Leads to Dilated Cardiomyopathy, Insulin Resistance and Premature Death. Mol. Cell. Biol. 29: 378–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Cooke M, Orlando U, Maloberti P, et al (2011) Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res. 52: 1936–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Yu J, Deng R, Zhu HH, et al (2013) Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem. 288: 3823–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ahmad F and Goldstein BJ (1995) Alterations in specific proteintyrosine phosphatases accompany insulin resistance of streptozotocin diabetes. Am J Physiol. 268: E932–40.

    CAS  PubMed  Google Scholar 

  58. Ahmad F and Goldstein BJ (1995) Increased abundance of specific skeletal muscle proteintyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism. 44: 1175–84.

    Article  CAS  PubMed  Google Scholar 

  59. Bonini JA, Colca J and Hofmann C (1995) Altered expression of insulin signaling components in streptozotocin-treated rats. Biochem Biophys Res Commun. 212: 933–8.

    Article  CAS  PubMed  Google Scholar 

  60. Bonini JA, Colca JR, Dailey C, et al (1995) Compensatory alterations for insulin signal transduction and glucose transport in insulin-resistant diabetes. Am J Physiol. 269: E759–65.

    CAS  PubMed  Google Scholar 

  61. Kraja AT, Chasman DI, North KE, et al (2014) Pleiotropic genes for metabolic syndrome and inflammation. Mol Genet Metab. 112: 317–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Jamshidi Y, Gooljar SB, Snieder H, et al (2007) SHP-2 and PI3-kinase genes PTPN11 and PIK3R1 may influence serum apoB and LDL cholesterol levels in normal women. Atherosclerosis. 194: e26–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jia ZF, Cao XY, Cao DH, et al (2013) Polymorphisms of PTPN11 gene could influence serum lipid levels in a sexspecific pattern. Lipids Health Dis. 12: 72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lu HS, Saito Y, Umeda M, et al (2008) Structural and functional diversity in the PAR1b/MARK2-binding region of Helicobacter pylori CagA. Cancer Sci. 99: 2004–11.

    CAS  PubMed  Google Scholar 

  65. Tartaglia M, Gelb BD and Zenker M (2011) Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab. 25: 161–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Tartaglia M, Zampino G and Gelb BD (2010) Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol. 1: 2–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Edouard T, Montagner A, Dance M, et al (2007) How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? Cell. Mol. Life. Sci. 64: 1585–90.

    Article  CAS  PubMed  Google Scholar 

  68. Araki T, Chan G, Newbigging S, et al (2009) Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc. Natl. Acad. Sci. USA 106: 4736–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Krenz M, Gulick J, Osinska HE, et al (2008) Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc. Natl. Acad. Sci. U. S. A. 105: 18930–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Bonetti M, Paardekooper Overman J, Tessadori F, et al (2014) Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development. 141: 1961–70.

    Article  CAS  PubMed  Google Scholar 

  71. Nakamura T, Colbert M, Krenz M, et al (2007) Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J. Clin. Invest. 117: 2123–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Nakamura T, Gulick J, Pratt R, et al (2009) Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations. Proc. Natl. Acad. Sci. USA 106: 15436–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kontaridis MI, Swanson KD, David FS, et al (2006) PTPN11 (SHP2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281: 6785–92.

    Article  CAS  PubMed  Google Scholar 

  74. Qiu W, Wang X, Romanov V, et al (2014) Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC Struct Biol. 14.

    Google Scholar 

  75. Oishi K, Gaengel K, Krishnamoorthy S, et al (2006) Transgenic Drosophila models of Noonan syndrome causing PTPN11 gainof- function mutations. Hum. Mol. Genet. 15: 543–53.

    Article  CAS  PubMed  Google Scholar 

  76. Oishi K, Zhang H, Gault WJ, et al (2008) Phosphatase-defective LEOPARD syndrome mutations in PTPN11 have gain-of-function effects during Drosophila development. Hum. Mol. Genet. 8: 193–201.

    Article  Google Scholar 

  77. Yu ZH, Xu J, Walls CD, et al (2013) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem. 288: 10472–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Marin TM, Keith K, Davies B, et al (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 121: 1026–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Schramm C, Fine DM, Edwards MA, et al (2012) The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol. 302: H231–43.

    Article  CAS  PubMed  Google Scholar 

  80. Tajan M, Batut A, Cadoudal T, et al (2014) LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci USA 111: E4494–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Binder G, Grathwol S, von Loeper K, et al (2012) Health and Quality of Life in Adults with Noonan Syndrome. J Pediatr. 161: 501–5.

    Article  PubMed  Google Scholar 

  82. Malaquias AC, Brasil AS, Pereira AC, et al (2012) Growth standards of patients with Noonan and Noonan-like syndromes with mutations in the RAS/MAPK pathway. Am J Med Genet A. 158A: 2700–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajan, M., Edouard, T., Valet, P. et al. SHP2 : une cible potentielle d’intérêt dans l’obésité et ses complications métaboliques ?. Obes 11, 23–33 (2016). https://doi.org/10.1007/s11690-015-0511-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-015-0511-8

Mots clés

Keywords

Navigation