Skip to main content

Interactions entre rythmicité circadienne et métabolisme

Interactions between circadian rhythmicity and metabolism

Résumé

La plupart des fonctions biologiques, y compris le métabolisme, présentent une rythmicité circadienne. Cette organisation temporelle est contrôlée par une horloge principale dans les noyaux suprachiasmatiques, mise à l’heure par la lumière et des horloges secondaires dans les tissus périphériques, synchronisées par l’horloge suprachiasmatique et l’heure du repas. Des régimes hypocaloriques ou, inversement, hyperlipidiques agissent de manière différentielle sur l’horloge suprachiasmatique. Les pathologies métaboliques sont fréquemment associées à des troubles circadiens. Au contraire, la désynchronisation circadienne perturbe le métabolisme en favorisant le surpoids et une détérioration de la tolérance au glucose.

Abstract

Most biological functions, including metabolism, display circadian rhythms. This temporal order is controlled by the master clock in the suprachiasmatic nuclei, mainly reset by ambient light, and secondary clocks in peripheral tissues, synchronized by the master clock and mealtime. Calorie restriction or high-fat feeding differentially modify the suprachiasmatic clockwork. Metabolic pathologies are frequently associated with circadian disorders. Conversely, circadian desynchronization negatively impacts metabolism by triggering increased adiposity and impaired glucose tolerance.

This is a preview of subscription content, access via your institution.

Références

  1. Ramsey KM, Marcheva B, Kohsaka A, Bass J 2007 The clockwork of metabolism. Annu Rev Nutr 27: 219–40

    Article  CAS  PubMed  Google Scholar 

  2. Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–49

    Article  CAS  PubMed  Google Scholar 

  4. Kalsbeek A, Palm IF, La Fleur SE, et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–69

    Article  CAS  PubMed  Google Scholar 

  5. Tahara Y, Shibata S (2013) Chronobiology and nutrition. Neuroscience 253C:78–88

    Article  Google Scholar 

  6. Eckel-Mahan K, Sassone-Corsi P (2013) Epigenetic regulation of the molecular clockwork. Prog Mol Biol Transl Sci 119:29–50

    Article  PubMed  Google Scholar 

  7. Luquet S, Magnan C (2009) The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schol Ed) 1:448–65

    Article  Google Scholar 

  8. Challet E, Mendoza J (2010) Metabolic and reward feeding synchronises the rhythmic brain. Cell Tissue Res 341:1–11

    Article  PubMed  Google Scholar 

  9. Turek FW, Joshu C, Kohsaka A, et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104:535–45

    Article  CAS  PubMed  Google Scholar 

  11. Vollmers C, Gill S, DiTacchio L, et al (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106:21453–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Delezie J, Dumont S, Dardente H, et al (2012) The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J 26:3321–35

    Article  CAS  PubMed  Google Scholar 

  13. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    Article  PubMed Central  PubMed  Google Scholar 

  14. Delezie J, Challet E (2011) Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann N Y Acad Sci 1243:30–46

    Article  CAS  PubMed  Google Scholar 

  15. Lucas RJ, Lall GS, Allen AE, Brown TM (2012) How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog Brain Res 199:1–18

    Article  CAS  PubMed  Google Scholar 

  16. Challet E, Denis I, Rochet V, et al (2013) The role of PPARbeta/delta in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus. Cell Mol Life Sci 70:2003–14

    Article  CAS  PubMed  Google Scholar 

  17. Calvel L, Hubbard J, Choteau L, et al (2012) The non-circadian effects of light influence depression-like behaviour in mice via melanopsin-based pathways. J Sleep Res 21:211

    Google Scholar 

  18. Ximenes da Silva A, Gendrot G, Serviere J, Lavialle M (2000) Daily changes of cytochrome oxidase activity within the suprachiasmatic nucleus of the Syrian hamster. Neurosci Lett 286:139–43

    Article  CAS  PubMed  Google Scholar 

  19. Isobe Y, Hida H, Nishino H (2011) Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res 89:929–35

    Article  CAS  PubMed  Google Scholar 

  20. Allen G, Rappe J, Earnest DJ, Cassone VM (2001) Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci 21:7937–43

    CAS  PubMed  Google Scholar 

  21. Paschos GK, Ibrahim S, Song WL, et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nature Medicine 18:1768–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Doi M, Takahashi Y, Komatsu R, et al (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med 16:67–74

    Article  CAS  PubMed  Google Scholar 

  23. Carvas JM, Vukolic A, Yepuri G, et al (2012) Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol 3:337

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bray MS, Shaw CA, Moore MW, et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036–47

    Article  Google Scholar 

  25. Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Marcheva B, Ramsey KM, Buhr ED, et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ruger M, Scheer FA (2009) Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord 10:245–60

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tsai LL, Tsai YC, Hwang K, et al (2005) Repeated light-dark shifts speed up body weight gain in male F344 rats. Am J Physiol Endocrinol Metab 289:e212–7

    Article  Google Scholar 

  29. Bartol-Munier I, Gourmelen S, Pevet P, Challet E (2006) Combined effects of high-fat feeding and circadian desynchronization. Int J Obes (Lond) 30:60–7

    Article  CAS  Google Scholar 

  30. Gale JE, Cox HI, Qian J, et al (2011) Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythms 26:423–33

    Article  PubMed Central  PubMed  Google Scholar 

  31. Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154:922–31

    Article  CAS  PubMed  Google Scholar 

  32. Coomans CP, van den Berg SA, Lucassen EA, et al (2013) The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 62:1102–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Challet E (2009) Horloges circadiennes, troubles métaboliques et chronobésité. Obésité 4:73–85

    Article  Google Scholar 

  34. Guyon A, Spiegel K (2014) Sommeil court et risque d’obésité. Obésité 4: DOI 10.1007/s11690-014-0415-z

  35. Kohsaka A, Laposky AD, Ramsey KM, et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6: 414–21

    Article  CAS  PubMed  Google Scholar 

  36. Van Cauter E, Polonsky KS, Scheen AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18:716–38

    PubMed  Google Scholar 

  37. Otway DT, Mantele S, Bretschneider S, et al (2011) Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60:1577–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Challet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Challet, E. Interactions entre rythmicité circadienne et métabolisme. Obes 10, 41–50 (2015). https://doi.org/10.1007/s11690-014-0462-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-014-0462-5

Mots clés

  • Horloge circadienne
  • Heure des repas
  • Obésité
  • Diabète
  • Travail posté
  • Jetlag

Keywords

  • Circadian clocks
  • Meal time
  • Obesity
  • Diabetes
  • Shift work
  • Jetlag