Skip to main content
Log in

Obésité et maladie du foie gras non alcoolique

Obesity and non a alcoholic fatty liver disease

  • Article / Article
  • Published:
Obésité

An Erratum / Erratum to this article was published on 24 February 2014

Résumé

Les complications hépatiques de l’obésité (Non alcoholic fatty liver diseases, NAFLD) sont la première cause de maladie hépatique en France. Les NAFLD vont de la stéatose à la stéatohépatite (Non-Alcoholic SteatoHepatitis, NASH), la fibrose, la cirrhose et parfois le carcinome hépatocellulaire. Les NAFLD sont fréquemment associées à l’obésité viscérale, l’insulino-résistance et le syndrome métabolique. Cependant, les mécanismes physiopathologiques responsables de la progression d’une stéatose isolée « bénigne/non évolutive » à une NASH sont mal connus. Des interactions entre le tissu adipeux et le foie, l’intestin et le foie et entre l’intestin et le tissu adipeux sont impliquées dans la genèse des NAFLD. Cette revue développera des données récemment identifiées pour le diagnostic et la compréhension du développement des NAFLD au cours de l’obésité et, plus particulièrement, les marqueurs non invasifs de NASH, les mécanismes intrahépatiques (régulation de l’inflammation hépatique, dépôts de fer intra-hépatiques, mort hépatocytaire) et les facteurs extra-hépatiques impliqués (tissu adipeux et intestin).

Abstract

Abstract The hepatic complications of obesity (Non Alcoholic fatty liver disease, NAFLD) are the first cause of liver diseases in France. NAFLD range from steatosis to steatohepatitis (Non-Alcoholic SteatoHepatitis, NASH), fibrosis, cirrhosis and finally hepatocellular carcinoma. NAFLD are frequently associated with visceral obesity, insulin resistance and metabolic syndrome. However, the pathophysiological mechanisms responsible for the progression from a “safety” state to NASH are still unclear. Cross talks between adipose tissue and liver, gut and liver and between gut and adipose tissue have been involved in the NAFLD appearance. This review will provide insight into the current diagnosis and understanding of development of NAFLD including noninvasive markers of NASH, intra-hepatic mechanisms (regulation of the hepatic inflammation, hepatocellular iron deposition, hepatocyte death) and extra-hepatic factors (from adipose tissue and gut) in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

NASH:

Non-alcoholic steatohepatitis

NAFLD:

Non-alcoholic fatty liver disease

LPS:

Lipopolysaccharide

ALAT:

Alanine amino-transférase

ASAT:

Aspartate-amino-transférase

TNF:

Tumor necrosis factor

IL:

Interleukine

Références

  1. Clark JM (2006) The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 40:S5–10

    PubMed  Google Scholar 

  2. Paradis V, Zalinski S, Chelbi E, et al (2009) Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 49:851–9

    Article  PubMed  Google Scholar 

  3. Kleiner DE, Brunt EM, Van Natta M, et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–21

    Article  PubMed  Google Scholar 

  4. Bedossa P, Poitou C, Veyrie N, et al (2012) Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56:1751–9

    Article  PubMed  Google Scholar 

  5. Nascimbeni F, Pais R, Bellentani S, et al (2013) From NAFLD in clinical practice to answers from guidelines. J Hepatol 59:859–71

    Article  PubMed  Google Scholar 

  6. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–5

    Article  CAS  PubMed  Google Scholar 

  7. Ekstedt M, Franzen LE, Mathiesen UL, et al (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44:865–73

    Article  CAS  PubMed  Google Scholar 

  8. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–46

    Article  CAS  PubMed  Google Scholar 

  9. Machado MV, Cortez-Pinto H (2013) Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol 58:1007–19

    Article  PubMed  Google Scholar 

  10. Yoneda M, Mawatari H, Fujita K, et al (2007) High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol 42:573–82

    Article  CAS  PubMed  Google Scholar 

  11. Hui JM, Farrell GC, Kench JG, George J (2004) High sensitivity C-reactive protein values do not reliably predict the severity of histological changes in NAFLD. Hepatology 39:1458–9

    Article  PubMed  Google Scholar 

  12. Anty R, Bekri S, Luciani N, et al (2006) The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, Type 2 diabetes, and NASH. Am J Gastroenterol 101:1824–33

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann E, Anty R, Tordjman J, et al (2011) C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. J Hepatol 55:660–5

    Article  CAS  PubMed  Google Scholar 

  14. Joka D, Wahl K, Moeller S, et al (2012) Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology 55:455–64

    Article  CAS  PubMed  Google Scholar 

  15. Anty R, Iannelli A, Patouraux S, et al (2010) A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther 32:1315–22.

    Article  CAS  PubMed  Google Scholar 

  16. Lavallard VJ, Bonnafous S, Patouraux S, et al (2011) Serum markers of hepatocyte death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLoS One 6:e17599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Valenti L, Fracanzani AL, Fargion S (2009) The immunopathogenesis of alcoholic and non alcoholic steatohepatitis: two triggers for one disease? Semin Immunopathol 138:359–69

    Article  Google Scholar 

  18. Wan J, Benkdane M, Teixeira-Clerc F, et al (2013) M2 Kupffer cells promote M1 Kupffer cell apoptosis: A protective mechanism against alcoholic and non-alcoholic fatty liver disease. Hepatology doi: 10.1002/hep.26607

    Google Scholar 

  19. Syn WK, Oo YH, Pereira TA, et al (2010) Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51:1998–2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bertola A, Bonnafous S, Anty R, et al (2010) Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One 5:e13577

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wieckowska A, Papouchado BG, Li Z, et al (2008) Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol 103:1372–9

    Article  CAS  PubMed  Google Scholar 

  22. Bigorgne AE, Bouchet-Delbos L, Naveau S, et al (2008) Obesity-induced lymphocyte hyperresponsiveness to chemokines: a new mechanism of Fatty liver inflammation in obese mice. Gastroenterology 134:1459–69

    Article  PubMed  Google Scholar 

  23. Bertola A, Deveaux V, Bonnafous S, et al (2009) Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes 58:125–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Patouraux S, Bonnafous S, Voican CS, et al (2012) The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease. PLoS One7:e35612

    Article  Google Scholar 

  25. Syn WK, Agboola KM, Swiderska M, et al (2012) NKT-associated hedgehog and osteopontin drive fibrogenesis in nonalcoholic fatty liver disease. Gut 61:1323–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–35

    Article  CAS  PubMed  Google Scholar 

  27. Cani PD, Amar J, Iglesias MA, et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72

    Article  CAS  PubMed  Google Scholar 

  28. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–32

    Article  CAS  PubMed  Google Scholar 

  29. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–5

    Article  CAS  PubMed  Google Scholar 

  30. Henao-Mejia J, Elinav E, Jin C, et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–85

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Csak T, Ganz M, Pespisa J, et al (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Szabo G, Csak T (2012) Inflammasomes in liver diseases. J Hepatol 57:642–54

    Article  CAS  PubMed  Google Scholar 

  33. George DK, Goldwurm S, MacDonald GA, et al (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114:311–8

    Article  CAS  PubMed  Google Scholar 

  34. Xiong S, She H, Sung CK, Tsukamoto H (2003) Iron-dependent activation of NF-kappaB in Kupffer cells: a priming mechanism for alcoholic liver disease. Alcohol 30:107–13

    Article  CAS  PubMed  Google Scholar 

  35. b. Valenti L, Fracanzani AL, Bugianesi E, et al (2010) HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with non alcoholic fatty liver disease. Gastroenterology 138:905–12

    Article  Google Scholar 

  36. Bekri S, Gual P, Anty R, et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–96

    Article  CAS  PubMed  Google Scholar 

  37. Luciani N, Brasse-Lagnel C, Poli M, et al (2011) Hemojuvelin: a new link between obesity and iron homeostasis. Obesity 19:1545–51

    Article  CAS  PubMed  Google Scholar 

  38. Anty R, Dahman M, Iannelli A, et al (2008) Bariatric Surgery Can Correct Iron Depletion in Morbidly Obese Women: A Link with Chronic Inflammation. Obes Surg 18:709–14

    Article  PubMed  Google Scholar 

  39. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, et al (2010) Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity 18:1449–56

    Article  CAS  PubMed  Google Scholar 

  40. Malhi H, Gores GJ (2008) Cellular and molecular mechanisms of liver injury. Gastroenterology 134:1641–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Xu H, Barnes GT, Yang Q, et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Weisberg SP, McCann D, Desai M, et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cancello R, Henegar C, Viguerie N, et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–86

    Article  CAS  PubMed  Google Scholar 

  45. Weisberg SP, Hunter D, Huber R, et al (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kiefer FW, Neschen S, Pfau B, et al (2011) Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia 54:2132–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Feuerer M, Herrero L, Cipolletta D, et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Nishimura S, Manabe I, Nagasaki M, et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–20

    Article  CAS  PubMed  Google Scholar 

  49. Winer S, Chan Y, Paltser G, et al (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Patsouris D, Li PP, Thapar D, et al (2008) Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell metabolism 8:301–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bertola A, Ciucci T, Rousseau D, et al (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Winer DA, Winer S, Shen L, et al (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17:610–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Abdelmalek MF, Suzuki A, Guy C, et al (2010) Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51:1961–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Vijay-Kumar M, Aitken JD, Carvalho FA, et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231.

    Article  CAS  PubMed  Google Scholar 

  55. Cotillard A, Kennedy SP, Kong LC, et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–8

    Article  CAS  PubMed  Google Scholar 

  56. Burcelin R, Serino M, Chabo C, et al (2013) Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, obesity & metabolism 15 Suppl 3:61–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gual.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anty, R., Patouraux, S., Tran, A. et al. Obésité et maladie du foie gras non alcoolique. Obes 9, 271–279 (2014). https://doi.org/10.1007/s11690-014-0414-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-014-0414-4

Mots clés

Keywords

Navigation