Skip to main content
Log in

Modulation de la sensibilité à l’insuline par les adapteurs moléculaires de la famille de Grb7

Modulation of insulin sensitivity by the Grb7 family of molecular adaptors

  • Article Original / Original Article
  • Published:
Obésité

Résumé

Les protéines de la famille de Grb7 (growth factor binding protein 7), dont Grb10 et Grb14, sont récemment apparues comme étant des inhibiteurs de l’action de l’insuline. Leur rôle a été démontré à l’aide de modèles génétiques murins. Le mécanisme moléculaire de l’action de ces régulateurs implique à la fois un effet direct sur l’activité catalytique du récepteur de l’insuline et des effets plus en aval dans les voies de signalisation. L’inhibition pharmacologique de l’action de Grb10/14 pourrait être une approche innovante pour améliorer la sensibilité à l’insuline et la régulation de l’homéostasie énergétique.

Abstract

The Grb7 family of proteins recently emerged as inhibitors of insulin action. The generation of genetic mouse models allowed demonstrating their physiological role in the control of insulin sensitivity and energy metabolism. Their molecular mechanism of action involves a direct inhibition of the insulin receptor catalytic activity and also more distal interferences in insulin signaling pathways that are not yet fully described. The pharmacological inhibition of Grb10/14 action could be a new approach to improve insulin sensitivity and glucose homeostasy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Nandi A, Kitamura Y, Kahn CR, Accili D (2004) Mouse models of insulin resistance. Physiol Rev 84:623–647

    Article  PubMed  CAS  Google Scholar 

  2. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  3. Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 284:E663–E670

    PubMed  CAS  Google Scholar 

  4. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    Article  PubMed  CAS  Google Scholar 

  5. Sun XJ, Liu F (2009) Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. Vitam Horm 80:351–387

    Article  PubMed  CAS  Google Scholar 

  6. Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17:365–371

    Article  PubMed  CAS  Google Scholar 

  7. Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 192:29–36

    Article  CAS  Google Scholar 

  8. Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action-and more? Biochem J 388:393–406

    Article  PubMed  CAS  Google Scholar 

  9. Di Paola R, Ciociola E, Boonyasrisawat W, et al (2006) Association of hGrb10 genetic variations with type 2 diabetes in Caucasian subjects. Diabetes Care 29:1181–1183

    Article  PubMed  Google Scholar 

  10. Rampersaud E, Damcott CM, Fu M, et al (2007) Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: evidence for replication from diabetes-related quantitative traits and from independent populations. Diabetes 56:3053–3062

    Article  PubMed  CAS  Google Scholar 

  11. Heid IM, Jackson AU, Randall JC, et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42:949–960

    Article  PubMed  CAS  Google Scholar 

  12. Cariou B, Capitaine N, Le Marcis V, et al (2004) Increased adipose tissue expression of Grb14 in several models of insulin resistance. Faseb J 18:965–967

    PubMed  Google Scholar 

  13. Park JJ, Berggren JR, Hulver MW, et al (2006) Grb14, GPD1 and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics 27:114–121

    Article  PubMed  CAS  Google Scholar 

  14. Shiura H, Miyoshi N, Konishi A, et al (2005) Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades. Biochem Biophys Res Commun 329:909–916

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto Y, Ishino F, Kaneko-Ishino T, et al (2008) Type 2 diabetes mellitus in a non-obese mouse model induced by Meg1/Grb10 overexpression. Exp Anim 57:385–395

    Article  PubMed  CAS  Google Scholar 

  16. Charalambous M, Smith FM, Bennett WR, et al (2003) Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an IGF2-independent mechanism. Proc Natl Acad Sci USA 100:8292–8297

    Article  PubMed  CAS  Google Scholar 

  17. Smith FM, Holt LJ, Garfield AS, et al (2007) Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol Cell Biol 27:5871–5886

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Balas B, Christ-Roberts CY, et al (2007) Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol 27:6497–6505

    Article  PubMed  CAS  Google Scholar 

  19. Morrione A, Plant P, Valentinis B, et al (1999) mGrb10 interacts with Nedd4. J Biol Chem 274:24094–24099

    Article  PubMed  CAS  Google Scholar 

  20. Vecchione A, Marchese A, Henry P, et al (2003) The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor i receptor. Mol Cell Biol 23:3363–3372

    Article  PubMed  CAS  Google Scholar 

  21. Ramos FJ, Langlais PR, Hu D, et al (2006) Grb10 mediates insulin-stimulated degradation of the insulin receptor: a mechanism of negative regulation. Am J Physiol Endocrinol Metab 290:E1262–E1266

    Article  PubMed  CAS  Google Scholar 

  22. Cao XR, Lill NL, Boase N (2008) Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal 1:ra5

    Article  PubMed  Google Scholar 

  23. Cooney GJ, Lyons RJ, Crew AJ, et al (2004) Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. Embo J 23:582–593

    Article  PubMed  CAS  Google Scholar 

  24. Lin RC, Weeks KL, Gao XM, et al (2010) PI3-K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3-K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol 30:724–732

    Article  PubMed  CAS  Google Scholar 

  25. Kasus-Jacobi A, Perdereau D, Auzan C, et al (1998) Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem 273:26026–26035

    Article  PubMed  CAS  Google Scholar 

  26. Frantz JD, Giogetti-Peraldi S, Ottinger EA, Shoelson SE (1997) Human Grb-IRb/Grb10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J Biol Chem 272:2659–2667

    Article  PubMed  CAS  Google Scholar 

  27. Holt LJ, Lyons RJ, Ryan AS, et al (2009) Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol Endocrinol 23:1406–1414

    Article  PubMed  CAS  Google Scholar 

  28. Monami G, Emiliozzi V, Morrione A (2008) Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 216:426–437

    Article  PubMed  CAS  Google Scholar 

  29. Boura-Halfon S, Zick Y (2009) Serine kinases of insulin receptor substrate proteins. Vitam Horm 80:313–349

    Article  PubMed  CAS  Google Scholar 

  30. Tronche F, Casanova E, Turiault M, et al (2002) When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett 529:116–121

    Article  PubMed  CAS  Google Scholar 

  31. Carré N, Caüzac M, Girard J, Burnol AF (2008) Dual effect of the adapter Grb14 on insulin action in primary hepatocytes. Endocrinology 149:3109–3117

    Article  PubMed  Google Scholar 

  32. Hegarty BD, Bobard A, Hainault I, et al (2005) Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci USA 102:791–796

    Article  PubMed  CAS  Google Scholar 

  33. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  PubMed  CAS  Google Scholar 

  34. He W, Rose DW, Olefsky JM, Gustafson TA (1998) Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem 273:6860–6867

    Article  PubMed  CAS  Google Scholar 

  35. Kasus-Jacobi A, Bereziat V, Perdereau D, et al (2000) Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2. Oncogene 19:2052–2059

    Article  PubMed  CAS  Google Scholar 

  36. Depetris RS, Hu J, Gimpelevich I, et al (2005) Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol Cell 20:325–333

    Article  PubMed  CAS  Google Scholar 

  37. Bereziat V, Kasus-Jacobi A, Perdereau D, et al (2002) Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J Biol Chem 277: 845–852

    Article  Google Scholar 

  38. Stein EG, Gustafson TA, Hubbard SR (2001) The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF-1 receptors. FEBS Lett 493:106–111

    Article  PubMed  CAS  Google Scholar 

  39. Depetris RS, Wu J, Hubbard SR (2009) Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nat Struct Mol Biol 16:833–839

    Article  PubMed  CAS  Google Scholar 

  40. Desbuquois B, Bereziat V, Authier F, et al (2008) Compartmentalization and in vivo insulin-induced translocation of the insulin-signaling inhibitor Grb14 in rat liver. Febs J 275:4363–4377

    Article  PubMed  CAS  Google Scholar 

  41. Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3:600–614

    Article  PubMed  CAS  Google Scholar 

  42. von Zastrow M, Sorkin A (2007) Signaling on the endocytic pathway. Curr Opin Cell Biol 19:436–445

    Article  Google Scholar 

  43. Goenaga D, Hampe C, Carre N, et al (2009) Molecular determinants of Grb14-mediated inhibition of insulin signaling. Mol Endocrinol 23:1043–1051

    Article  PubMed  CAS  Google Scholar 

  44. Moscat J, Diaz-Meco MT (2000) The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep 1:399–403

    Article  PubMed  CAS  Google Scholar 

  45. Cariou B, Perdereau D, Cailliau K (2002) The adapter protein ZIP binds Grb14 and regulates its inhibitory action on insulin signaling by recruiting protein kinase Cz. Mol Cell Biol 22:6959–6970

    Article  PubMed  CAS  Google Scholar 

  46. Nouaille S, Blanquart C, Zilberfarb V, et al (2006) Interaction with Grb14 results in site-specific regulation of tyrosine phosphorylation of the insulin receptor. EMBO Rep 7:512–518

    PubMed  CAS  Google Scholar 

  47. Nouaille S, Blanquart C, Zilberfarb V, et al (2006) Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. Biochem Pharmacol 72:1355–1366

    Article  PubMed  CAS  Google Scholar 

  48. Nantel A, Mohammad-Ali K, Sherk J, et al (1998) Interaction of the adapter Grb10 adapter protein with the Raf1 and MEK1 kinases. J Biol Chem 273:10475–10484

    Article  PubMed  CAS  Google Scholar 

  49. Deng Y, Bhattacharya S, Swamy OR, et al (2003) Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem 278:39311–39322

    Article  PubMed  CAS  Google Scholar 

  50. Jahn T, Seipel P, Urschel S, et al (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol 22:979–991

    Article  PubMed  CAS  Google Scholar 

  51. Kebache S, Ash J, Annis MG, et al (2007) Grb10 and active Raf-1 kinase promote bad-dependent cell survival. J Biol Chem 282:21873–21883

    Article  PubMed  CAS  Google Scholar 

  52. Rajala RV, Chan MD (2005) Identification of a NPXY motif in growth factor receptor-bound protein 14 (Grb14) and its interaction with the phosphotyrosine-binding (PTB) domain of IRS-1. Biochemistry 44:7929–7935

    Article  PubMed  CAS  Google Scholar 

  53. King CC, Newton AC (2004) The adaptor protein Grb14 regulates the localization of 3-phosphoinositide-dependent kinase-1. J Biol Chem 279:37518–37527

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. -F. Burnol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carré, N., Goenaga, D. & Burnol, A.F. Modulation de la sensibilité à l’insuline par les adapteurs moléculaires de la famille de Grb7. Obes 6, 114–122 (2011). https://doi.org/10.1007/s11690-011-0280-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-011-0280-y

Mots clés

Keywords

Navigation