Skip to main content
Log in

Les 10es Entretiens de Nutrition, Institut Pasteur de Lille L’obésité, une maladie nutritionnelle ?

La nutri-épigénomique: comment l’environnement précoce, la nutrition remodèlent nos épigénomes ou les gènes à l’épreuve de l’environnement et du temps

Early and lifelong remodelling of our epigenome by nutrition

  • Dossier Thématique / Thematic File
  • Published:
Obésité

Résumé

Au cours du développement, à l’héritage génétique inscrit dans les gènes, vient s’ajouter une programmation par des processus épigénétiques — qui modulent de manière définitive ou transitoire l’expression spatiotemporelle des gènes sans modifier leur séquence. De manière concomitante, une multitude de facteurs environnementaux comme l’environnement intra-utérin, aux effets délétères mais aussi protecteurs, interfèrent avec les processus épigénétiques, eux-mêmes en interaction permanente avec le fond génétique, le dimorphisme sexuel et les rythmes circadiens.

Abstract

A person’s phenotype is the result of complex interactions between genotype, epigenome and current, past and ancestral environment, which lead to a lifelong remodelling of our epigenomes. Depending on the nature and intensity of the insult the critical spatiotemporal windows and developmental or lifelong processes involved, these epigenetic alterations can lead to permanent changes in tissue and organ structure and function, or, to reversible changes — using appropriate epigenetic tools — which may even be passed on to the next generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Rankinen T, Bouchard C (2006) Genetics of food intake and eating behavior phenotypes in humans. Annu Rev Nutr 26: 413–434

    Article  PubMed  CAS  Google Scholar 

  2. Gallou-Kabani C, Vige A, Gross MS, Junien C (2007) Nutriepigenomics: lifelong remodelling of our epigenomes by nutritional, metabolic factors and beyond. Clin Chem Lab Med 45: 321–327

    Article  PubMed  CAS  Google Scholar 

  3. Waddington C (1942) Canalisation of development and inheritance of acquired characters. Nature 152: 563

    Article  Google Scholar 

  4. Spotswood HT, Turner BM (2002) An increasingly complex code. J Clin Invest 110: 577–582

    PubMed  CAS  Google Scholar 

  5. Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54: 1899–1906

    Article  PubMed  CAS  Google Scholar 

  6. Devaskar S, Raychaudhuri S (2007) Epigenetics: a science of heritable biological adaptation. Pediatr Res 61: 1R–4R

    Article  PubMed  Google Scholar 

  7. Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49: 4–8

    Article  PubMed  CAS  Google Scholar 

  8. Whitelaw NC, Whitelaw E (2006) How lifetimes shape epigenotype within and across generations? Hum Mol Genet 15(Suppl 2): R131–R137

    Article  PubMed  CAS  Google Scholar 

  9. Vige A, Gallou-Kabani C, Junien C (2008) Epigenetics and sexual dimorphism of non-Mendelian inheritance. Pediatr Res 4: 340–347

    Article  Google Scholar 

  10. Yang X, Schadt EE, Wang S, et al. (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16: 995–1004

    Article  PubMed  CAS  Google Scholar 

  11. Nakatani Y, Ray-Gallet D, Quivy JP, et al. (2004) Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes. Cold Spring Harb Symp Quant Biol 69: 273–280

    Article  PubMed  CAS  Google Scholar 

  12. Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127: 481–493

    Article  PubMed  CAS  Google Scholar 

  13. Ptitsyn AA, Zvonic S, Conrad SA, et al. (2006) Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol 2: e16

    Article  PubMed  CAS  Google Scholar 

  14. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497–508

    Article  PubMed  CAS  Google Scholar 

  15. Staels B (2006) When the Clock stops ticking, metabolic syndrome explodes. Nat Med 12: 54–55; (discussion 55)

    Article  PubMed  CAS  Google Scholar 

  16. Fontaine C, Staels B (2007) The orphan nuclear receptor Reverbalpha: a transcriptional link between circadian rhythmicity and cardiometabolic disease. Curr Opin Lipidol 18: 141–146

    Article  PubMed  CAS  Google Scholar 

  17. Ueda HR, Hayashi S, Chen W, et al. (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37: 187–192

    Article  PubMed  CAS  Google Scholar 

  18. Hayes KR, Baggs JE, Hogenesch JB (2005) Circadian clocks are seeing the systems biology light. Genome Biol 6: 219

    Article  PubMed  CAS  Google Scholar 

  19. Muhlhausler BS, Adam CL, Findlay PA, et al. (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. Faseb J 20: 1257–1259

    Article  PubMed  CAS  Google Scholar 

  20. Gluckman PD, Hanson MA, Beedle AS (2007) Nongenomic transgenerational inheritance of disease risk. Bioessays 29: 145–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Junien.

Additional information

Ce texte correspond à une conférence faite par l’auteur, il n’a donc pas été soumis à l’appréciation du comité de rédaction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junien, C. Les 10es Entretiens de Nutrition, Institut Pasteur de Lille L’obésité, une maladie nutritionnelle ?. Obes 3, 124–127 (2008). https://doi.org/10.1007/s11690-008-0128-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-008-0128-2

Mots clés

Keywords

Navigation