Skip to main content
Log in

Obésité sarcopénique: « parle à mon gras, mon muscle est malade »!

Sarcopenic obesity: “Talk to my fat, my muscle is out”!

  • Revue Scientifique / Scientific Review
  • Published:
Obésité

Résumé

La réaction inflammatoire issue de l’accumulation adipeuse est l’un des mécanismes expliquant les liens forts entre l’obésité et certaines pathologies métaboliques. Du fait des modifications de la composition corporelle avec l’âge, en particulier l’augmentation de la masse adipeuse, ces phénomènes inflammatoires pourraient être néfastes pour la fonction musculaire chez la personne âgée. Les effets des cytokines pro-inflammatoires sur le métabolisme protéino-énergétique musculaire (réduction de l’insulinosensibilité, augmentation de la perte protéique) sont connus. Les adipocytokines produites en excès chez le sujet en surpoids, notamment au cours de la phase postprandiale, pourraient aussi participer au dysfonctionnement métabolique et fonctionnel musculaire avec l’âge et favoriser le développement de l’obésité sarcopénique.

Abstract

Inflammatory reaction caused by a fat accumulation is one of the mechanisms that explain the strong links that exist between obesity and some metabolic diseases. Because of changes in body composition with age, i.e. increase in adipose tissue; this inflammatory reaction could be harmful for muscle function in elderly people. The effects of pro-inflammatory cytokines on muscle protein and energy metabolism (reduction in insulin sensitivity, increase in protein loss) are known. Adipocytokines produced in excess in overweight subjects, especially during the postprandial period, could therefore contribute to metabolic and functional changes in muscle with age and encourage the onset of sarcopenic obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Basdevant A (2006) Enquête Obepi. Réalisée par TNS Healthcare Sofres

  2. Villareal DT, Apovian CM, Kushner RF, et al. (2005) Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes Res 13: 1849–1863

    PubMed  Google Scholar 

  3. Zamboni M, Mazzali G, Zoico E, et al. (2005) Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes (Lond) 29: 1011–1029

    Article  CAS  Google Scholar 

  4. Hossain P, Kawar B, El Nahas M, et al. (2007) Obesity and diabetes in the developing world: a growing challenge. NEngl J Med 356: 213–215

    Article  CAS  Google Scholar 

  5. Mokdad AH, Bowman BA, Ford ES, et al. (2001) The continuing epidemics of obesity and diabetes in the United States. Jama 286: 1195–1200

    Article  PubMed  CAS  Google Scholar 

  6. Seidell JC (2002) Prevalence and time trends of obesity in Europe. J Endocrinol Invest 25: 816–822

    PubMed  CAS  Google Scholar 

  7. ObEpi E (2006) Réalisée par TNS Healthcare Sofres

  8. Elia M (2001) Obesity in the elderly. Obes Res 9 Suppl 4: 244S–248S

    Google Scholar 

  9. Flegal KM, Carroll MD, Ogden CL, et al. (2002) Prevalence and trends in obesity among US adults, 1999–2000. Jama 288: 1723–1727

    Article  PubMed  Google Scholar 

  10. Gutierrez-Fisac JL, Lopez E, Banegas JR, et al. (2004) Prevalence of overweight and obesity in elderly people in Spain. Obes Res 12: 710–715

    PubMed  Google Scholar 

  11. Mokdad AH, Ford ES, Bowman BA, et al. (2003) Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. Jama 289: 76–79

    Article  PubMed  Google Scholar 

  12. Arterburn DE, Crane PK, Sullivan SD (2004) The coming epidemic of obesity in elderly Americans. J Am Geriatr Soc 52: 1907–1912

    Article  PubMed  Google Scholar 

  13. Proctor DN, O’Brien PC, Atkinson EJ, et al. (1999) Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Physiol 277: E489–E495

    PubMed  CAS  Google Scholar 

  14. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127: 990S–991S

    PubMed  CAS  Google Scholar 

  15. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52: 80–85

    Article  PubMed  Google Scholar 

  16. Gallagher D, Kovera AJ, Clay-Williams G, et al. (2000) Weight loss in postmenopausal obesity: no adverse alterations in body composition and protein metabolism. Am J Physiol Endocrinol Metab 279: E124–E131

    PubMed  CAS  Google Scholar 

  17. Wehrli NE, Bural G, Houseni M (2007) Determination of age-related changes in structure and function of skin, adipose tissue, and skeletal muscle with computed tomography, magnetic resonance imaging, and positron emission tomography. Semin Nucl Med 37: 195–205

    Article  PubMed  Google Scholar 

  18. van Harmelen V, Dicker A, Ryden M, et al. (2002) Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes 51: 2029–2036

    Article  PubMed  Google Scholar 

  19. Baumgartner RN, Wayne SJ, Waters DL, et al. (2004) Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 12: 1995–2004

    Article  PubMed  Google Scholar 

  20. Roubenoff R (2004) Sarcopenic obesity: the confluence of two epidemics. Obes Res 12: 887–888

    PubMed  Google Scholar 

  21. Fong Y, Moldawer LL, Marano M, et al. (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256: R659–R665

    PubMed  CAS  Google Scholar 

  22. Lang CH, Frost RA, Nairn AC, et al. (2002) TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 282: E336–E347

    PubMed  CAS  Google Scholar 

  23. Visser M, Harris TB, Langlois J, et al. (1998) Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham Heart Study. J Gerontol A Biol Sci Med Sci 53: M214–M221

    PubMed  CAS  Google Scholar 

  24. Guillet C, Prod’homme M, Balage M, et al. (2004) Imparied anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB 18: 1586–1587

    CAS  Google Scholar 

  25. Walrand S, Vasson MP, Lesourd B (2003) The role of nutrition in immunity of the aged. In Pergigon G, Fuller R (eds): Glut flora, nutrition and immunity. Oxford: Blackwells 237–269

    Google Scholar 

  26. Kennedy RL, Chokkalingham K, Srinivasan R (2004) Obesity in the elderly: who should we be treating, and why, and how? Curr Opin Clin Nutr Metab Care 7: 3–9

    Article  PubMed  Google Scholar 

  27. Lago F, Dieguez C, Gomez-Reino J, et al. (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 18: 313–325

    Article  PubMed  CAS  Google Scholar 

  28. Argiles JM, Busquets S, Alvarez B, et al. (1999) Mechanism for the increased skeletal muscle protein degradation in the obese Zucker rat. J Nutr Biochem 10: 244–248

    Article  PubMed  CAS  Google Scholar 

  29. Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184: 285–293

    Article  PubMed  CAS  Google Scholar 

  30. Bullo M, Garcia-Lorda P, Megias I, et al. (2003) Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res 11: 525–531

    PubMed  CAS  Google Scholar 

  31. Engstrom G, Stavenow L, Hedblad B, et al. (2003) Inflammation-sensitive plasma proteins and incidence of myocardial infarction in men with low cardiovascular risk. Arterioscler Thromb Vasc Biol 23: 2247–2251

    Article  PubMed  CAS  Google Scholar 

  32. Festa A, D’Agostino R, Jr., Williams K, et al. (2001) The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 25: 1407–1415

    Article  PubMed  CAS  Google Scholar 

  33. Yudkin JS, Stehouwer CD, Emeis JJ, et al. (1999) C reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19: 972–978

    PubMed  CAS  Google Scholar 

  34. Bastard JP, Jardel C, Bruckert E, et al. (2000) Variations in plasma soluble tumour necrosis factor receptors after dietinduced weight loss in obesity. Diabetes Obes Metab 2: 323–325

    Article  PubMed  CAS  Google Scholar 

  35. Clement K, Viguerie N, Poitou C, et al. (2004) Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. Faseb J 18: 1657–1669

    Article  PubMed  CAS  Google Scholar 

  36. Esposito K, Pontillo A, Di Palo C, et al. (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. Jama 289: 1799–1804

    Article  PubMed  CAS  Google Scholar 

  37. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115: 1111–1119

    Article  PubMed  CAS  Google Scholar 

  38. Balagopal P, Sweeten S, Mauras N (2002) Increased synthesis rate of fibrinogen as a basis for its elevated plasma levels in obese female adolescents. Am J Physiol Endocrinol Metab 282: E899–E904

    PubMed  CAS  Google Scholar 

  39. Balagopal P, George D, Patton N, et al. (2005) Lifestyle-only intervention attenuates the inflammatory state associated with obesity: a randomized controlled study in adolescents. J Pediatr 146: 342–348

    Article  PubMed  Google Scholar 

  40. Borst SE, Conover CF (2005) High-fat diet induces increased tissue expression of TNF-alpha. Life Sci 77: 2156–2165

    Article  PubMed  CAS  Google Scholar 

  41. Esposito K, Nappo F, Giugliano F, et al. (2003) Effect of dietary antioxidants on postprandial endothelial dysfunction induced by a high-fat meal in healthy subjects. Am J Clin Nutr 77: 139–143

    PubMed  CAS  Google Scholar 

  42. Nappo F, Esposito K, Cioffi M, et al. (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39: 1145–1150

    Article  PubMed  CAS  Google Scholar 

  43. Issa JS, Diament J, Forti N (2005) Postprandial lipemia: influence of aging. Arq Bras Cardiol 85: 15–19

    Article  PubMed  Google Scholar 

  44. Burdge GC, Calder PC (2005) Plasma cytokine response during the postprandial period: a potential causal process in vascular disease? Br J Nutr 93: 3–9

    Article  PubMed  CAS  Google Scholar 

  45. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112: 1785–1788

    Article  PubMed  CAS  Google Scholar 

  46. Ajuwon KM, Spurlock ME (2005) Palmitate activates the NF-kappaB transcription factor and induces IL-6 and TNF-alpha expression in 3T3-L1 adipocytes. J Nutr 135: 1841–1846

    PubMed  CAS  Google Scholar 

  47. Ciapaite J, van Bezu J, van Eikenhorst G, et al. (2007) Palmitate and oleate have distinct effects on the inflammatory phenotype of human endothelial cells. Biochim Biophys Acta 1771: 147–154

    PubMed  CAS  Google Scholar 

  48. Mensink RP (2005) Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids 40: 1201–1205

    Article  PubMed  CAS  Google Scholar 

  49. Dietze D, Koenen M, Rohrig K, et al. (2002) Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes 51: 2369–2376

    Article  PubMed  CAS  Google Scholar 

  50. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 87–91

    Article  PubMed  CAS  Google Scholar 

  51. Wang B, Jenkins JR, Trayhurn P (2005) Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am J Physiol Endocrinol Metab 288: E731–E740

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Martinez C, Agell N, Llovera M, et al. (1993) Tumor necrosis factor-alpha increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 323: 211–214

    Article  PubMed  CAS  Google Scholar 

  53. Guttridge DC, Mayo MW, Madrid LV, et al. (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289: 2363–2366

    Article  PubMed  CAS  Google Scholar 

  54. Li YP (2003) TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285: C370–C376

    PubMed  CAS  Google Scholar 

  55. Li YP, Schwartz RJ, Waddell ID, et al. (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. Faseb J 12: 871–880

    PubMed  CAS  Google Scholar 

  56. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287: C834–C843

    Article  PubMed  CAS  Google Scholar 

  57. Li YP, Atkins CM, Sweatt JD, et al. (1999) Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid Redox Signal 1: 97–104

    PubMed  CAS  Google Scholar 

  58. Sandri M, Sandri C, Gilbert A, et al. (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399–412

    Article  PubMed  CAS  Google Scholar 

  59. Chan CP, Hansen RJ, Stern JS (1985) Protein turnover in insulin-treated, alloxan-diabetic lean and obese Zucker rats. J Nutr 115: 959–969

    PubMed  CAS  Google Scholar 

  60. Durschlag RP, Layman DK (1983) Skeletal muscle growth in lean and obese Zucker rats. Growth 47: 282–291

    PubMed  CAS  Google Scholar 

  61. Reeds PJ, Haggarty P, Wahle KW, et al. (1982) Tissue and whole-body protein synthesis in immature Zucker rats and their relationship to protein deposition. Biochem J 204: 393–398

    PubMed  CAS  Google Scholar 

  62. Chevalier S, Marliss EB, Morais JA, et al. (2005) Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr 82: 355–365

    PubMed  CAS  Google Scholar 

  63. Nair KS, Garrow JS, Ford C, et al. (1983) Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia 25: 400–403

    Article  PubMed  CAS  Google Scholar 

  64. Patterson BW, Horowitz JF, Wu G, et al. (2002) Regional muscle and adipose tissue amino-acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab 282: E931–E936

    PubMed  CAS  Google Scholar 

  65. Lopez-Soriano J, Carbo N, Lopez-Soriano FJ, et al. (1998) Short-term effects of leptin on lipid metabolism in the rat. FEBS Lett 431: 371–374

    Article  PubMed  CAS  Google Scholar 

  66. Ceddia RB, William WN, Jr., Curi R (1999) Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation. Int J Obes Relat Metab Disord 23: 75–82

    Article  PubMed  CAS  Google Scholar 

  67. Yaspelkis BB, Davis JR, Saberi M, et al. (2001) Leptin administration improves skeletal muscle insulin responsiveness in diet-induced insulin-resistant rats. Am J Physiol Endocrinol Metab 280: E130–E142

    PubMed  CAS  Google Scholar 

  68. Sweeney G, Keen J, Somwar R, et al. (2001) High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in 16 rat skeletal muscle cells. Endocrinology 142: 4806–4812

    Article  PubMed  CAS  Google Scholar 

  69. Carbo N, Ribas V, Busquets S, et al. (2000) Short-term effects of leptin on skeletal muscle protein metabolism in the rat. J Nutr Biochem 11: 431–435

    Article  PubMed  CAS  Google Scholar 

  70. Moon B, Kwan JJ, Duddy N, et al. (2003) Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 285: E106–E115

    PubMed  CAS  Google Scholar 

  71. Zoico E, Roubenoff R (2002) The role of cytokines in regulating protein metabolism and muscle function. Nutr Rev 60: 39–51

    Article  PubMed  Google Scholar 

  72. Bastard JP, Jardel C, Bruckert E, et al. (2000) Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 85: 3338–3342

    Article  PubMed  CAS  Google Scholar 

  73. Argiles JM, Lopez-Soriano J, Almendro V, et al. (2005) Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 25: 49–65

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Walrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walrand, S., Boirie, Y. Obésité sarcopénique: « parle à mon gras, mon muscle est malade »!. Obes 2, 331–338 (2007). https://doi.org/10.1007/s11690-007-0088-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-007-0088-y

Mots clés

Keywords

Navigation