Skip to main content

A Survey on Native and Invasive Mosquitoes and Other Biting Dipterans in Northern Spain

Abstract

Purpose

Haematophagous Diptera, such as mosquitoes (Culicidae), biting midges (Ceratopogonidae), and black flies (Simuliidae), are important insects for public and animal health due to their capacity to bite and transmit pathogens. Outdoor recreation areas are usually affected by biting species and provide suitable habitats to both adult and immature stages. This study aimed to determine the species diversity and larval sites of these Diptera groups in two golf courses.

Methods

A multi-method collection approach using ultraviolet-CDC traps, human landing catches, collection in breeding sites, and ovitraps was implemented during summer 2020 in northern Spain. Insects were determined by morphological features accompanied by DNA barcoding.

Results

A total of ten native mosquito species were recorded either as adults or as larval stages. The invasive species Aedes japonicus was collected only at egg or pupa stage in ovitraps. Culex pipiens s.l. and Culex torrentium were both common mosquito species accounting for 47.9% of the total larval site collections and their larvae might be found in a wide range of natural and artificial sites. Culiseta longiareolata specimens were also prominent (30.1% of the total) and occurred exclusively in man-made water-filled containers. A total of 13 Culicoides species were identified, 10 of which were captured by ultraviolet-CDC traps, particularly members of the Obsoletus complex (Culicoides obsoletus/Culicoides scoticus, 74.9%) and seven species by emergence traps, being the two most abundant C. kibunensis (44.8%) and C. festivipennis (34.9%). Simulium cryophilum was also collected hovering around the operator under field sampling.

Conclusion

A comprehensive representation of the blood-sucking Diptera fauna and their larval sites was obtained by the multi-method approach in two Spanish golf courses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Eigenschenk B, Thomann A, Mcclure M, Davies L, Gregory M, Dettweiler U et al (2019) Benefits of outdoor sports for society. A systematic literature review and reflections on evidence. Int J Environ Res Public Health 16:937. https://doi.org/10.3390/ijerph16060937

    Article  PubMed Central  Google Scholar 

  2. Aymerich F, Anabitarte J (2016) El impacto económico del golf en España. http://www.rfegolf.es/ArtculosDocumento/Turismo%20e%20impacto%20econ%C3%B3mico/Turismo%20e%20impacto%20econ%C3%B3mico%202016/2016%20impacto%20econ%C3%B3mico%20del%20golf%20en%20Espa%C3%B1a.pdf. Accessed 25 June 2021

  3. Donaldson J, Kazmierski B, Marcouiller D (2011) Local economic impacts of golfing: a case study of the Luck Golf Course in Polk County, Wisconsin. https://dpla.wisc.edu/wp-content/uploads/sites/1021/2017/06/11-01.pdf. Accessed 15 May 2021

  4. Medlock JM, Vaux AG (2015) Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration. J Vector Ecol 40:90–106. https://doi.org/10.1111/jvec.12137

    Article  PubMed  Google Scholar 

  5. Hendry G (2011) Midges in Scotland, 5th edn. Bell & Bain Ltd, Glasgow

    Google Scholar 

  6. González MA, López S, Goldarazena A (2013) New record of the biting midge Leptoconops noei in northern Spain: notes on its seasonal abundance and flying height preference. J Insect Sci 13:45. https://doi.org/10.1673/031.013.4501

    Article  PubMed  PubMed Central  Google Scholar 

  7. Obregón R, Flores E, Jordano D (2019) First report of the Asian tiger mosquito, Aedes (Stegomyia) albopictus Skuse, 1984 (Diptera, Culicidae) in Cordoba (southern Spain). New challenges for the administration and citizens of Cordoba. J Euro Mosq Control Assoc 37:29–33

    Google Scholar 

  8. Ruiz-arrondo I, Garza-hernández JA, Reyes-villanueva F, Lucientes-curdi J, Rodríguez-pérez MA (2017) Human-landing rate, gonotrophic cycle length, survivorship, and public health importance of Simulium erythrocephalum in Zaragoza, northeastern Spain. Parasit Vectors 10:175. https://doi.org/10.1186/s13071-017-2115-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lothrop BB, Mulla MS (1995) Mode of existence and seasonality of midge larvae (Diptera: Chironomidae) in man-made lakes in the Coachella Valley, southern California. J Am Mosq Control Assoc 11:77–85

    CAS  PubMed  Google Scholar 

  10. Gray EW, Adler PH, Noblet R (1996) Economic impact of black flies (Diptera:Simuliidae) in South Carolina and development of a localized suppression program. J Am Mosq Control Assoc 12:676–678

    CAS  PubMed  Google Scholar 

  11. Breidenbaugh MS, Clark JW, Brodeur RM, de Szalay FA (2009) Seasonal and diel patterns of biting midges (Ceratopogonidae) and mosquitoes (Culicidae) on the Parris Island marine corps recruit depot. J Vector Ecol 34:129–140. https://doi.org/10.3376/038.034.0116

    Article  PubMed  Google Scholar 

  12. Adler PH, Currie DC, Wood M, Idema RM (2004) The black flies (Simuliidae) of North America. Comstock Publ, Ontario

    Google Scholar 

  13. Goiri F, González MA, Goikolea J, Oribe M, Castro V, Delacour S et al (2020) Progressive invasion of Aedes albopictus in Northern Spain in the period 2013–2018 and a possible association with the increase in insect bites. Int J Environ Res Public Health 17:1678. https://doi.org/10.3390/ijerph17051678

    Article  PubMed Central  Google Scholar 

  14. Eritja R, Ruiz-arrondo I, Delacour-Estrella S, Schaffner F, Álvarez-chachero J, Bengoa M et al (2019) First detection of Aedes japonicus in Spain: an unexpected finding triggered by citizen science. Parasit Vectors 12:53. https://doi.org/10.1186/s13071-019-3317-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eritja R, Delacour-Estrella S, Ruiz-Arrondo I, González MA, Barceló C, García-Pérez AL et al (2021) At the tip of an iceberg: citizen science and active surveillance collaborating to broaden the known distribution of Aedes japonicus in Spain. Parasite Vectors 14:375. https://doi.org/10.1186/s13071-021-04874-4

    Article  Google Scholar 

  16. Tomasello D, Schlagenhauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med Infect Dis 11:274–284. https://doi.org/10.1016/j.tmaid.2013.07.006

    Article  PubMed  Google Scholar 

  17. Aranda C, Martinez MJ, Montalvo T, Corbella I, Bigas E, Barrabeig I et al (2018) Arbovirus surveillance: first dengue virus detection in local Aedes albopictus mosquitoes in Europe, Catalonia, Spain, 2015. Euro Surveill 23:1700837. https://doi.org/10.2807/1560-7917

    Article  PubMed Central  Google Scholar 

  18. ECDC 2019. Epidemiological update: third case of locally acquired Zika virus disease in Hyères F. https://www.ecdc.europa.eu/en/news-events/epidemiological-update-third-case-locally-acquired-zika-virus-disease-hyeres-france. Accessed 13 Dec 2019

  19. Schaffner F, Vazeille M, Kaufmann C, Failloux A, Schaffner F, Vazeille M et al (2011) Vector competence of Aedes japonicus for chikungunya and dengue viruses. Euro Mos Bull 29:141–142

    Google Scholar 

  20. Veronesi E, Paslaru A, Silaghi C, Tobler K, Glavinic U, Torgerson P et al (2018) Experimental evaluation of infection, dissemination, and transmission rates for two West Nile virus strains in European Aedes japonicus under a fluctuating temperature regime. Parasitol Res 117:1925–1932. https://doi.org/10.1007/s00436-018-5886-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Abbo SR, Visser TM, Wang H, Göertz GP, Fros JJ, Abma-Henkens M et al (2020) The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl Trop Dis 14:e0008217. https://doi.org/10.1371/journal.pntd.0008217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Glavinic U, Varga J, Paslaru AI, Hauri J, Torgerson P, Schaffner F et al (2020) Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime. Parasites Vectors 13:479. https://doi.org/10.1186/s13071-020-04361-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vogels CBF, Göertz GP, Pijlman GP, Koenraadt CJM (2017) Vector competence of European mosquitoes for west Nile virus. Emerg Microbes Infect 6:1–13. https://doi.org/10.1038/emi.2017.82

    Article  Google Scholar 

  24. ECDC (2020) Weekly updates: 2020 West Nile virus transmission season. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc. Accessed 25 June 2021.

  25. Carpenter S, Groschup MH, Garros C, Felippe-Bauer ML, Purse BV (2013) Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res 100:102–113. https://doi.org/10.1016/j.antiviral.2013.07.020

    CAS  Article  PubMed  Google Scholar 

  26. Koenraadt CJM, Balenghien T, Carpenter S, Ducheyne E, Elbers ARW et al (2014) Bluetongue, Schmallenberg—what is next? Culicoides-borne viral diseases in the 21st century. BMC Vet Res 10:77

    Article  Google Scholar 

  27. Figueras L, Lucientes J, Ruiz Arrondo I, Ramos Antón JJ et al (2011) Caso clínico. Ataque de simúlidos en rumiantes. Veterinaria Independiente 147:22

    Google Scholar 

  28. Santiago-Alarcón D, Palinauskas V, Schaefer HM (2012) Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles. Biol Rev Camb Philos Soc 87:928–864. https://doi.org/10.1111/j.1469-185X.2012.00234.x

    Article  PubMed  Google Scholar 

  29. Basque Institute of Meteorological Data (2020) Euskalmet. Meteorological data. https://apps.euskadi.eus/s07-5853x/es/meteorologia/graficos.apl?e=5. Accessed 15 Jan 2021

  30. ECDC (2012) Technical report. Guidelines for the surveillance of invasive mosquitoes in Europe. https://www.ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/TER-Mosquito-surveillance-guidelines.pdf. Accessed 15 May 2021

  31. Farnesi LC, Martins AJ, Valle D, Rezende GL (2009) Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz 104:124–126. https://doi.org/10.1590/s0074-02762009000100020

    Article  PubMed  Google Scholar 

  32. Rivosecchi L, Addonisio, M, Maiolini B (2007) Ditteri Simulidi: nuove chiavi dicotomiche per l’identificazione delle specie italiane con brevi note bio-tassonomiche. Mus Trident di Sci Nat, Italy.

  33. Becker N, Petric D, Zgomba M, Boase C, Madon MDC (2010) Mosquitoes and their control, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  34. Mathieu B, Cêtre-Sossah C, Garros C, Chavernac D, Balenghien T, Carpenter S et al (2012) Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit Vectors 5:1–11. https://doi.org/10.1186/1756-3305-5-137

    Article  Google Scholar 

  35. Augot D, Sauvage F, Jouet D, Simphal E, Veuille M, Couloux A et al (2010) Discrimination of Culicoides obsoletus and Culicoides scoticus, potential bluetongue vectors, by morphometrical and mitochondrial cytochrome oxidase subunit I analysis. Infect Genet Evol 10:629–637. https://doi.org/10.1016/j.meegid.2010.03.016

    CAS  Article  PubMed  Google Scholar 

  36. Nielsen SA, Kristensen M (2011) Morphological and molecular identification of species of the Obsoletus group Diptera: Ceratopogonidae) in Scandinavia. Parasitol Res 109:1133–1141. https://doi.org/10.1007/s00436-011-2357-9

    Article  PubMed  Google Scholar 

  37. González M, Goldarazena A (2011) El Género Culicoides en el País Vasco: Guía Práctica para su Identificación y Control. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz

    Google Scholar 

  38. Ruiz-arrondo I, Hernández-triana LM, Ignjatovi A, Nikolova N, Garza-hernández JA, Rodríguez-pérez MA et al (2018) DNA barcoding of blackflies (Diptera: Simuliidae) as a tool for species identification and detection of hidden diversity in the eastern regions of Spain. Parasit Vectors 11:463. https://doi.org/10.1186/s13071-018-3046-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ruiz-Arrondo I, McMahon BJ, Hernández-Triana LM, Santibañez P, Portillo A, Oteo JA (2019) Surveillance of mosquitoes (Diptera, Culicidae) in a northern central region of Spain: implications for the medical community. Front Vet Sci 6:86. https://doi.org/10.3389/fvets.2019.00086

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ruiz-Arrondo I, Hernández-Triana LM, Nikolova NI, Fooks AR, Oteo JA (2020) Integrated approaches in support of taxonomic identification of mosquitoes (Diptera: Culicidae) in vector surveillance in Spain. Vector Borne Zoonotic Dis 20:831–842. https://doi.org/10.1089/vbz.2020.2662

    Article  PubMed  Google Scholar 

  41. Schaffner F, Medlock JM, Van Bortel W (2013) Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect 19:685–692. https://doi.org/10.1111/1469-

    CAS  Article  PubMed  Google Scholar 

  42. Collantes F, Delacour S, Delgado JA, Bengoa M, Torrell-Sorio A, Guinea H et al (2016) Updating the known distribution of Aedes albopictus in (Skuse, 1894)Spain. Acta Trop 164:64–68. https://doi.org/10.1016/j.actatropica.2016.08.023

    Article  PubMed  Google Scholar 

  43. Koban MB, Kampen H, Scheuch DE, Frueh L, Kuhlisch C, Janssen N et al (2019) The Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Europe, 17 years after its first detection, with a focus on monitoring methods. Parasit Vectors 12:109. https://doi.org/10.1186/s13071-019-3349-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marabuto E, Rebelo MT (2018) The Asian tiger mosquito, Aedes albopictus (Skuse, 1894), a vector of dengue, chikungunya and zika, reaches Portugal. Zootaxa 413:97–200. https://doi.org/10.11646/zootaxa.4413.1.10

    Article  Google Scholar 

  45. Zittra C, Flechl E, Kothmayer M, Vitecek S, Rossiter H, Zechmeister T (2016) Ecological characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern Austria. Parasit Vectors 9(9):7. https://doi.org/10.1186/s13071-016-1495-4

    CAS  Article  Google Scholar 

  46. Brugman VA, Hern LM, Medlock JM, Fooks AR, Carpenter S, Johnson N (2018) The role of Culex pipiens L. (Diptera: Culicidae) in virus transmission in Europe. Int J Environ Res Public Health 15:389. https://doi.org/10.3390/ijerph15020389

    Article  PubMed Central  Google Scholar 

  47. Bueno Marí R (2010) Bioecologia, diversidad e interés epidemiológico de los culícidos mediterráneos (Diptera:Culicidae). Dissertation, University of Valencia.

  48. Seidel B, Nowotny N, Duh D, Indra A, Hufnagl P, Allerberger F (2012) First records of the thermophilic mosquito Culiseta longiareolata (Macquart, 1838) in Austria, 2012, and in Slovenia, 2013. J Am Mosq Control Assoc 31:17–20

    Google Scholar 

  49. Becker N, Hoffmann D (2011) First record of Culiseta longiareolata (Macquart) for Germany. J Am Mosq Control Assoc 29:143–150

    Google Scholar 

  50. Roiz D, Eritja R, Escosa R, Lucientes J, Marquès E, Ruiz S (2017) A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species. J Vector Ecol 32:10–15. https://doi.org/10.3376/1081-1710

    Article  Google Scholar 

  51. Schaffner F, Thiéry I, Kaufmann C, Zettor A, Lengeler C (2012) Anopheles plumbeus (Diptera : Culicidae) in Europe: a mere nuisance mosquito or potential malaria vector ? Malar J 11:393. https://doi.org/10.1186/1475-2875-11-393

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tagliapietra V, Arnoldi D, Luca MD, Toma L, Rizzoli A (2019) Investigation on potential malaria vectors (Anopheles spp.) in the Province of Trento, Italy. Malar J 18:151. https://doi.org/10.1186/s12936-019-2785-z

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bueno Marí R, Jiménez-Peydró R (2010) New anopheline records from the Valencian Autonomous Region of Eastern Spain (Diptera: Culicidae: Anophelinae). J Eur Mosq Control Assoc 28:148–156

    Google Scholar 

  54. Chakarov N, Kampen H, Wiegmann A, Werner D, Bensch S (2020) Blood parasites in vectors reveal a united blackfly community in the upper canopy. Parasit Vectors 13:309. https://doi.org/10.1186/s13071-020-04177-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. López-Peña D, Jiménez Peydró R (2017) Updated checklist and distribution maps of blackflies (Diptera: Simuliidae) of Spain. Simuliid Bull 48(supplement):1–45

    Google Scholar 

  56. Cuéllar AC, Kjær LJ, Kirkeby C, Skovgard H, Nielsen SA, Stockmarr A et al (2018) Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries. Parasit Vectors 11:112. https://doi.org/10.1186/s13071-018-2706-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mignotte A, Garros C, Gardès L, Balenghien T, Duhayon M, Rakotoarivony I et al (2020) The tree that hides the forest:cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level. Parasit Vectors 13:265. https://doi.org/10.1186/s13071-020-04114-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zimmer JY, Smeets F, Simonon G, Fagot J, Haubruge E, Francis F et al (2013) Are bogs reservoirs for emerging disease vectors? Evaluation of Culicoides populations in the Hautes Fagnes Nature Reserve (Belgium). PLoS ONE 8:e66893. https://doi.org/10.1371/journal.pone.0066893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Möhlmann TWR, Bekendam AM, van Kemenade I, Wennergren U, Favia G, Takken W et al (2019) Latitudinal diversity of biting midge species within the Obsoletus group across three habitats in Europe. Med Vet Entomol 33:420–426. https://doi.org/10.1111/mve.12379

    Article  PubMed  PubMed Central  Google Scholar 

  60. England ME, Kelly PP, Brugman VA, King S, Gubbins S, Sach F et al (2020) Culicoides species composition and molecular identification of host blood meals at two zoos in the UK. Parasit Vectors 13:139. https://doi.org/10.1186/s13071-020-04018-0

    Article  PubMed  PubMed Central  Google Scholar 

  61. González MA, Goiri F, Barandika JF, García-Pérez AL (2020) Culicoides biting midges and mosquito fauna at three dog and cat shelters in rural and periurban areas in Northern Spain. Med Vet Entomol 35:79–87. https://doi.org/10.1111/mve.12471

    Article  PubMed  Google Scholar 

  62. González MA, López S, Mullens BA, Baldet T, Goldarazena A (2013) A survey of Culicoides developmental sites on a farm in northern Spain, with a brief review of immature habitats of European species. Vet Parasitol 191:81–93. https://doi.org/10.1016/j.vetpar.2012.08.025

    Article  PubMed  Google Scholar 

  63. Werner D, Groschupp S, Bauer C, Kampen H (2020) Breeding habitat preferences of major Culicoides species (Diptera: Ceratopogonidae) in Germany. Int J Environ Res Public Health 17:5000. https://doi.org/10.3390/ijerph17145000

    Article  PubMed Central  Google Scholar 

  64. Uslu U, Dik B (2017) Description of breeding sites of Culicoides species (Diptera: Ceratopogonidae) in Turkey. Parasite 4:173–177. https://doi.org/10.1051/parasite/2007142173

    Article  Google Scholar 

  65. Foxi C, Delrio G (2010) Larval habitats and seasonal abundance of Culicoides biting midges found in association with sheep in northern Sardinia, Italy. Med Vet Entomol 24:199–209. https://doi.org/10.1111/j.1365-2915.2010.00861.x

    CAS  Article  PubMed  Google Scholar 

  66. Harrup L, Affairs R, Purse BV, Mellor PS, Carpenter S (2013) Larval development and emergence sites of farm-associated Culicoides in the United Kingdom. Med Vet Entomol 27:441–449. https://doi.org/10.1111/mve.12006

    CAS  Article  PubMed  Google Scholar 

  67. Montarsi F, Martini S, Michelutti A, Rold GD, Mazzucato M, Qualizza D et al (2019) The invasive mosquito Aedes japonicus japonicus is spreading in northeastern Italy. Parasit Vectors 12:120. https://doi.org/10.1186/s13071-019-3387-x

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bova AJ, Paulson S, Paulson G (2016) Morphological differentiation of the eggs of North American container-inhabiting Aedes mosquitoes. J Am Mosq Control Assoc 32:244–246. https://doi.org/10.2987/15-6535.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the managers of the golf clubs for allowing us to conduct this study. The first author of this study (MAG) has carried out the investigation without any financing. The author wants to claim the difficulty to make science in a country that invests very little in I + D.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Data collection and analysis were performed by MAG, MB, CB, SD and RBM. The first draft of the manuscript was written by MAG, RE and IRA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mikel A. González.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, M.A., Delacour-Estrella, S., Bengoa, M. et al. A Survey on Native and Invasive Mosquitoes and Other Biting Dipterans in Northern Spain. Acta Parasit. 67, 867–877 (2022). https://doi.org/10.1007/s11686-022-00529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00529-1

Keywords

  • Aedes japonicus
  • Black flies
  • Breeding sites
  • Culicidae
  • Culicoides
  • Golf courses