Skip to main content
Log in

Nisin Induces Cell-Cycle Arrest in Free-Living Amoebae Acanthamoeba castellanii

  • Short Communication
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Acanthamoeba spp. are free-living amoebas with worldwide distribution and play an important role as disease-causing agents in humans. Drug inability to completely eradicate these parasites along with their toxic effects suggest urgent need for new antimicrobials. Nisin is a natural antimicrobial peptide produced by Lactococcus lactis. Nisin is also the only bacteriocin approved for use in food preservation. In this work, we analyzed the effect of nisin on the growth of Acanthamoeba castellanii trophozoites.

Methods

A total of 8 × 104 trophozoites were exposed to increasing concentrations of nisin to determine its activity. Changes in cell membrane and cellular cycle of trophozoites were investigated by flow cytometry, and nisin cytotoxicity in mammalian cells was evaluated in L929 cells by MTT method.

Results

After 24 h exposure to increasing nisin concentrations, an IC50 of 4493.2 IU mL−1 was obtained for A. castellanii trophozoites. However, after 72 h a recovery in amoebic growth was observed, and it was no longer possible to determine IC50. Flow cytometry analysis showed that nisin has no effect on the membrane integrity. Treatment with nisin induced cell-cycle arrest during G1 and S phases in A. castellanii trophozoites, which recovered their growth after 72 h.

Conclusion

This is one of the first studies showing the effect of internationally approved nisin against A. castellanii trophozoites. Nisin caused cell-cycle arrest in trophozoites, momentarily interfering with the DNA replication process. The data highlight the amoebostatic activity of nisin, and suggest its use as an adjuvant for the treatment of infections caused by Acanthamoeba spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mahmoudi MR, Rahmati B, Seyedpour SH, Karanis P (2015) Occurrence and molecular characterization of free-living amoeba species (Acanthamoeba, Hartmannella, and Saccamoeba limax) in various surface water resources of Iran. Parasitol Res 114:4669–4674. https://doi.org/10.1007/s00436-015-4712-8

    Article  PubMed  Google Scholar 

  2. Duggal SD, Rongpharpi SR, Duggal AK et al (2017) Role of Acanthamoeba in granulomatous encephalitis: a review. J Infect Dis Immune Ther 1:1

    Google Scholar 

  3. Harrison WT, Lecky B, Hulette CM (2018) Fatal granulomatous amebic encephalitis in a heart transplant patient: clinical, radiographic, and autopsy findings. J Neuropathol Exp Neurol 77:1001–1004. https://doi.org/10.1093/jnen/nly089

    Article  PubMed  Google Scholar 

  4. Matsui T, Maeda T, Kusakabe S et al (2018) A case report of granulomatous amoebic encephalitis by group 1 Acanthamoeba genotype T18 diagnosed by the combination of morphological examination and genetic analysis. Diagn Pathol 13:1–6. https://doi.org/10.1186/s13000-018-0706-z

    Article  Google Scholar 

  5. Robaei D, Carnt N, Minassian DC, Dart JKG (2014) The impact of topical corticosteroid use before diagnosis on the outcome of Acanthamoeba keratitis. Ophthalmology 121:1383–1388. https://doi.org/10.1016/j.ophtha.2014.01.031

    Article  PubMed  Google Scholar 

  6. Maycock NJR, Jayaswal R (2016) Update on Acanthamoeba keratitis: diagnosis, treatment, and outcomes. Cornea 35:713–720. https://doi.org/10.1097/ICO.0000000000000804

    Article  PubMed  Google Scholar 

  7. CDC (2017) Acanthamoeba keratitis fact sheet for healthcare professionals. https://www.cdc.gov/parasites/acanthamoeba/health_professionals/acanthamoeba_keratitis_hcp.html. Accessed 20 October 2020

  8. Papa V, Rama P, Radford C et al (2020) Acanthamoeba keratitis therapy: time to cure and visual outcome analysis for different antiamoebic therapies in 227 cases. Br J Ophthalmol 104:575–581. https://doi.org/10.1136/bjophthalmol-2019-314485

    Article  PubMed  Google Scholar 

  9. Ehlers N, Hjortdal J (2004) Are cataract and iris atrophy toxic complications of medical treatment of Acanthamoeba keratitis? Acta Ophthalmol Scand 82:228–231. https://doi.org/10.1111/j.1600-0420.2004.00237.x

    Article  PubMed  Google Scholar 

  10. Herz NL, Matoba AY, Wilhelmus KR (2008) Rapidly progressive cataract and iris atrophy during treatment of Acanthamoeba keratitis. Ophthalmology 115:866–869. https://doi.org/10.1016/j.ophtha.2007.05.054

    Article  PubMed  Google Scholar 

  11. Carrijo-Carvalho LC, Sant’ana VP, Foronda AS et al (2017) Therapeutic agents and biocides for ocular infections by free-living amoebae of Acanthamoeba genus. Surv Ophthalmol 62:203–218. https://doi.org/10.1016/j.survophthal.2016.10.009

    Article  PubMed  Google Scholar 

  12. Chikindas ML, Weeks R, Drider D et al (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  13. Modugno C, Loupiac C, Bernard A et al (2018) Effect of high pressure on the antimicrobial activity and secondary structure of the bacteriocin nisin. Innov Food Sci Emerg Technol 47:9–15. https://doi.org/10.1016/j.ifset.2018.01.006

    Article  CAS  Google Scholar 

  14. Ogaki MB, Furlaneto MC, Maia LF (2015) Review: General aspects of bacteriocins. Braz J Food Technol 18:267–276. https://doi.org/10.1590/1981-6723.2215

    Article  CAS  Google Scholar 

  15. Bali V, Panesar PS, Bera MB, Kennedy JF (2016) Bacteriocins: recent trends and potential applications. Crit Rev Food Sci Nutr 56:817–834. https://doi.org/10.1080/10408398.2012.729231

    Article  CAS  PubMed  Google Scholar 

  16. Hussein AR, Khalaf ZZ, Kadhim MJ (2017) The antibiofilm activity of bacteriocin produced by Proteus mirabilis against some bacterial species. Current Res Microbiol Biotechnol 5(3):1071–1077

    Google Scholar 

  17. Atanaskovic I, Kleanthous C (2019) Tools and approaches for dissecting protein bacteriocin import in gram-negative bacteria. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.00646

    Article  Google Scholar 

  18. Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8:177–182. https://doi.org/10.1007/s12602-016-9223-0

    Article  CAS  PubMed  Google Scholar 

  19. Lewies A, Du Plessis LH, Wentzel JF (2018) Antimicrobial peptides: the Achilles’ heel of antibiotic resistance? Probiotics Antimicrob Proteins 11:370–381. https://doi.org/10.1007/s12602-018-9465-0

    Article  CAS  Google Scholar 

  20. Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56:1262–1274. https://doi.org/10.1080/10408398.2013.763765

    Article  CAS  PubMed  Google Scholar 

  21. Shin JM, Gwak JW, Kamarajan P et al (2016) Biomedical applications of nisin. J Appl Microbiol 120:1449–1465. https://doi.org/10.1111/jam.13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benitez LB, Caumo K, Brandelli A, Rott MB (2011) Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga. Parasitol Res 108:687–691. https://doi.org/10.1007/s00436-010-2114-5

    Article  PubMed  Google Scholar 

  23. Anacarso I, Bondi M, Condo C (2014) Amoebicidal effects of three bacteriocin like substances from lactic acid bacteria against Acanthamoeba polyphaga. J Bacteriol Parasitol 6:8–11. https://doi.org/10.4172/2155-9597.1000201

    Article  CAS  Google Scholar 

  24. de Santos IGA, Scher R, Rott MB et al (2016) Amebicidal activity of the essential oils of Lippia spp. (Verbenaceae) against Acanthamoeba polyphaga trophozoites. Parasitol Res 115:535–540. https://doi.org/10.1007/s00436-015-4769-4

    Article  PubMed  Google Scholar 

  25. Britta EA, Barbosa Silva AP, Ueda-Nakamura T et al (2012) Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. PLoS ONE 7:1–12. https://doi.org/10.1371/journal.pone.0041440

    Article  CAS  Google Scholar 

  26. Mukherjee C, Clark CG, Lohia A (2008) Entamoeba shows reversible variation in ploidy under different growth conditions and between life cycle phases. PLoS Negl Trop Dis 2:1–9. https://doi.org/10.1371/journal.pntd.0000281

    Article  CAS  Google Scholar 

  27. Uzlikova M, Nohynkova E (2014) The effect of metronidazole on the cell cycle and DNA in metronidazole-susceptible and—resistant giardia cell lines. Mol Biochem Parasitol 198:75–81. https://doi.org/10.1016/j.molbiopara.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  28. ISO (2009) Biological evaluation of medical devices. Part 5: tests for in vitro cytotoxicity. 10993-5

  29. Amer EI, Mossallam SF, Mahrous H (2014) Therapeutic enhancement of newly derived bacteriocins against giardia lamblia. Exp Parasitol 146:52–63. https://doi.org/10.1016/j.exppara.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  30. Oyeyemi O, Adegbeyeni O, Oyeyemi I et al (2018) In vitro ovicidal activity of poly lactic acid curcumin-nisin co-entrapped nanoparticle against Fasciola spp. eggs and its reproductive toxicity. J Basic Clin Physiol Pharmacol 29:73–79. https://doi.org/10.1515/jbcpp-2017-0045

    Article  CAS  PubMed  Google Scholar 

  31. Martínez-García M, Bart JM, Campos-Salinas J et al (2018) Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. Int J Parasitol Drugs Drug Resist 8:203–212. https://doi.org/10.1016/j.ijpddr.2018.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martín-Escolano R, Cebrián R, Martín-Escolano J et al (2019) Insights into Chagas treatment based on the potential of bacteriocin AS-48. Int J Parasitol Drugs Drug Resist 10:1–8. https://doi.org/10.1016/j.ijpddr.2019.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abengózar MÁ, Cebrián R, Saugar JM et al (2017) Enterocin AS-48 as evidence for the use of bacteriocins as new leishmanicidal agents. Antimicrob Agents Chemother 61:1–13. https://doi.org/10.1128/AAC.02288-16

    Article  Google Scholar 

  34. Rose NL, Sporns P, Stiles ME, McMullen LM (1999) Inactivation of nisin by glutathione in fresh meat. J Food Sci 64:759–762. https://doi.org/10.1111/j.1365-2621.1999.tb15906.x

    Article  CAS  Google Scholar 

  35. Bhatti M, Veeramachaneni A, Shelef LA (2004) Factors affecting the antilisterial effects of nisin in milk. Int J Food Microbiol 97:215–219. https://doi.org/10.1016/j.ijfoodmicro.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  36. Grisi TCSDL, Gorlach-Lira K (2005) Action of nisin and high pH on growth of Staphylococcus aureus and Salmonella sp. in pure culture and in the meat of land crab (Ucides cordatus). Braz J Microbiol 36:151–156. https://doi.org/10.1590/S1517-83822005000200010

    Article  Google Scholar 

  37. Khunkitti W, Avery SV, Lloyd D et al (1997) Effects of biocides on Acanthamoeba castellanii as measured by flow cytometry and plaque assay. J Antimicrob Chemother 40:227–233. https://doi.org/10.1093/jac/40.2.227

    Article  CAS  PubMed  Google Scholar 

  38. Borazjani RN, May LL, Noble JA et al (2000) Flow cytometry for determination of the efficacy of contact lens disinfecting solutions against Acanthamoeba spp. Appl Environ Microbiol 66:1057–1061. https://doi.org/10.1128/AEM.66.3.1057-1061.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mogoa E, Bodet C, Legube B, Héchard Y (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126:97–102. https://doi.org/10.1016/j.exppara.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  40. Heredero-Bermejo I, Copa-Patiño JL, Soliveri J et al (2013) In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitol Res 112:961–969. https://doi.org/10.1007/s00436-012-3216-z

    Article  CAS  PubMed  Google Scholar 

  41. Imayasu M, Tchedre KT, Dwight Cavanagh H (2013) Effects of multipurpose solutions on the viability and encystment of Acanthamoeba determined by flow cytometry. Eye Contact Lens 39:228–233. https://doi.org/10.1097/ICL.0b013e31828af147

    Article  PubMed  Google Scholar 

  42. Heredero-Bermejo I, Copa-Patiño JL, Soliveri J et al (2015) Evaluation of the activity of new cationic carbosilane dendrimers on trophozoites and cysts of Acanthamoeba polyphaga. Parasitol Res 114:473–486. https://doi.org/10.1007/s00436-014-4205-1

    Article  PubMed  Google Scholar 

  43. Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9:227–235. https://doi.org/10.1017/S1466252308001497

    Article  PubMed  Google Scholar 

  44. Stohr M, Bommert K, Schulze I, Jantzen H (1987) The cell cycle and its relationship to development in Acanthamoeba castellanii. J Cell Sci 88:579–590

    Article  Google Scholar 

  45. Jantzen H, Schulze I, Stöhr M (1988) Relationship between the timing of DNA replication and the developmental competence in Acanthamoeba castellanii. J Cell Sci 91(Pt 3):389–399

    Article  Google Scholar 

  46. Byers TJ, Kim BG, King LE, Hugo ER (1991) Molecular aspects of the cell cycle and encystment of Acanthamoeba. Rev Infect Dis 13:S373–S384

    Article  CAS  Google Scholar 

  47. Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:1–10. https://doi.org/10.3389/fmicb.2014.00241

    Article  Google Scholar 

  48. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  49. Rodrigues FAR, Bomfim IS, Cavalcanti BC et al (2014) Mefloquine-oxazolidine derivatives: a new class of anticancer agents. Chem Biol Drug Des 83:126–131. https://doi.org/10.1111/cbdd.12210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partly financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES-Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

SSD and AATB conceived the study and designed the experiments. MCC, YLMO, JRS and ARSTS performed the experiments. RS and CBC participated in the flow cytometry experiments and guided data interpretation. SSD, AATB, MCC, ACSR, SJ and MBR analyzed data and participated in the writing and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ana Andrea Teixeira Barbosa or Silvio Santana Dolabella.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Clímaco , M., de Oliveira, Y.L.M., Ramos, A.C.S. et al. Nisin Induces Cell-Cycle Arrest in Free-Living Amoebae Acanthamoeba castellanii. Acta Parasit. 67, 511–517 (2022). https://doi.org/10.1007/s11686-021-00436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00436-x

Keywords

Navigation