Evaluation of In vitro and In vivo Protective Efficacy of Bauhinia variegata Against Leishmania donovani in Murine Model

Abstract

Purpose

Visceral leishmaniasis is one of the ignored parasitic infection affecting millions of people globally. Currently, available treatment options are unsatisfactory because of high cost and side effects of the leishmanicidal drugs. Therefore, herbal medicines provide a promising choice for the detection of efficient and novel leishmanicidal therapeutics which can rejuvenate the immune response of the host with less adverse effects. The objective of the present study was to determine the in vitro and in vivo effect of hydroethanolic extract of Bauhinia variegata (HEBV) against Leishmania donovani.

Methods

The in vitro efficacy and cytotoxicity of HEBV was checked against L. donovani and THP1 human macrophages. Further HEBV (500 and 1000 mg/kg b.wt.) were given orally to inbred BALB/c mice infected with L. donovani for 2 weeks and euthanized on 14th post treatment day. Various parameters like parasite load, delayed-type hypersensitivity (DTH) responses, T cells, Th1/Th2 cytokines, histological and biochemical tests were investigated.

Results

HEBV showed marked antileishmanial activity with cell cycle arrest at sub-G0/G1 phase. HEBV was found to be more effective at higher dose in declining parasite concentration in the spleen as compared to the lower dose. Moreover, the extract augmented the DTH reaction and T cell responses in the infected mice. Oral administration of HEBV caused the enhancement of disease-suppressing Th1 cytokines and suppression of disease-progressing Th2 cytokines with no toxicities.

Conclusion

Thus, HEBV showed the antileishmanial efficacy through the generation of pro-inflammatory immunity of the host which further suggests the mechanistic exploration of it as a leishmanicidal therapeutic.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Álvarez-Velilla R, del Camino G-C, Punzón C, Pérez-Pertejo MY, Balaña-Fouce R, Fresno M, Reguera RM (2019) A chronic bioluminescent model of experimental visceral leishmaniasis for accelerating drug discovery. Plos Neglect Trop D 13:e0007133. https://doi.org/10.1371/journal.pntd.0007133

    Article  CAS  Google Scholar 

  2. 2.

    Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL (2012) Visceral leishmaniasis treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist 2:11–19. https://doi.org/10.1016/j.ijpddr.2012.01.003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Monge-Maillo B, López-Vélez R (2013) Therapeutic options for visceral leishmaniasis. Drugs 73:1863–1888. https://doi.org/10.1007/s40265-013-0133-0

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. Plos Neglect Trop D 11:0006052. https://doi.org/10.1371/journal.pntd.0006052

    Article  CAS  Google Scholar 

  5. 5.

    Berger BJ, Fairlamb AH (1992) Interactions between immunity and chemotherapy in the treatment of the trypanosomiases and leishmaniases. Parasitology 105:S71–S78. https://doi.org/10.1017/S0031182000075375

    PubMed  Article  Google Scholar 

  6. 6.

    Jantan I, Ahmad W, Bukhari SNA (2015) Plant-derived immunomodulators. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00655

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    de Oliveira RM, de Araújo MS, da Penha-Silva TA, Almeida-Souza F, Abreu-Silva AL (2018) Alternative Treatment for Leishmaniasis. Leishmaniases as Re-emerging Diseases. https://doi.org/10.5772/intechopen.75895

    Article  Google Scholar 

  8. 8.

    Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK (2014) Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 22:18–45. https://doi.org/10.1016/j.bmc.2013.11.048

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Chouhan G, Islamuddin M, Sahal D, Afrin F (2014) Exploring the role of medicinal plant-based immunomodulators for effective therapy of leishmaniasis. Front Immunol 5:193. https://doi.org/10.3389/fimmu.2014.00193

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Marasani A, Babu MS (2013) Antistress/Adaptogenic activity of Bauhinia variegata against different stress paradigms. Int J Pharm Biol Arch 4:956

    Google Scholar 

  11. 11.

    Bansal V, Malviya R, Deeksha MT, Sharma PK (2014) Phytochemical, pharmacological profile and commercial utility of tropically distributed plant Bauhinia variegata. Global J Pharmacol 8:196–205. https://doi.org/10.5829/idosi.gjp.2014.8.2.82296

    Google Scholar 

  12. 12.

    Rao RR, Mahajan RC, Ganguly NK (1984) Modified media for in vitro cultivation of Leishmania promastigotes, a comparative study. Bull PGI 18:125–128

    Google Scholar 

  13. 13.

    Anyasor GN, Odunsanya K, Ibeneme A (2013) Hepatoprotective and in vivo antioxidant activity of Costus afer leaf extract against acetaminophen induced hepatotoxicity in rats. J Investig Biochem 2:53–61. https://doi.org/10.5455/jib.20130301030851

    Article  Google Scholar 

  14. 14.

    Tiwari P, Bimlesh K, Kaur M, Kaur G, Kaur H (2011) Phytochemical screening and extraction: a review. Int Pharma Sci 1:98–106

    Google Scholar 

  15. 15.

    Zhou SH, Fang ZX, Lu Y, Chen JC, Liu DH, Ye XQ (2009) Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem 112:394–399. https://doi.org/10.1016/j.foodchem.2008.05.104

    CAS  Article  Google Scholar 

  16. 16.

    Park YS, Jung ST, Kang SG, Heo BG, Arancibia-Avila P, Toledo F, Drzewiecki J, Namiesnik J, Gorinstein S (2008) Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem 107:640–648. https://doi.org/10.1016/j.foodchem.2007.08.070

    CAS  Article  Google Scholar 

  17. 17.

    Ghorai GN, Chakraborty S, Gucchait S, Saha SK, Biswas S (2012) Estimation of total terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protoc Exch. https://doi.org/10.1038/protex.2012.055

    Article  Google Scholar 

  18. 18.

    Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 21:A.3B.1-A.3B.2. https://doi.org/10.1002/0471142735.ima03bs21

    Google Scholar 

  19. 19.

    Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE 5(1):e8668. https://doi.org/10.1371/journal.pone.0008668

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Mehta SR, Zhang X, Badaro R, Spina C, Day J, Chang K, Schooley RT (2011) Flow cytometric screening for anti-leishmaniasis in a human macrophage cell line. Exp Parasitol 126:617–620. https://doi.org/10.1016/j.exppara.2010.06.007

    Article  CAS  Google Scholar 

  21. 21.

    Loiseau PM, Gupta S, Verma A, Srivastava S, Puri SK, Sliman F, Normand-Bayle M, Desmaele D (2011) In vitro activities of new 2-substituted quinolines against Leishmania donovani. Antimicrob Agents Chemother 55(4):1777–1780. https://doi.org/10.1128/AAC.01299-10

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Zakraoui O, Marcinkiewicz C, Aloui Z, Othman H, Grépin R, Haoues M, Essafi M, Srairi-Abid N, Gasmi A, Karoui H, Pages G (2017) Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Mol Carcinog 56:18–35. https://doi.org/10.1002/mc.22470

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54:275–287

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. 25.

    Hossain F, Ghosh P, Khan MAA, Duthie MS, Vallur AC, Picone A, Howard RF, Reed SG, Mondal D (2017) Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of visceral leishmaniasis patients and the monitoring of their response to treatment. PLoS ONE 12:e0185606. https://doi.org/10.1371/journal.pone.0185606

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Banerjee A, De M, Ali N (2008) Complete cure of experimental visceral leishmaniasis with amphotericin B in stearylamine-bearing cationic liposomes involves down-regulation of IL-10 and favorable T cell responses. J Immunol 181:1386–1398. https://doi.org/10.4049/jimmunol.181.2.1386

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gupta A, Khajuria J, Singh KL, Bedi NK, Satti P, Dutt KA, Suri OP, Qazi GN (2006) Immunomodulatory activity of biopolymeric fraction RLJ-NE-205 from Picrorhiza kurroa. Int Immunopharmacol 6:1543–1549. https://doi.org/10.1016/j.intimp.2006.05.002

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Pearse AGE (1968) Histochemistry, Theoretical and applied. J.A. Churchill Ltd, London

    Google Scholar 

  29. 29.

    Badaro R, Nascimento C, Carvalho JS, Badaro F, Russo D, Ho JL, Reed SG, Johnson WD Jr, Jones TC (1994) Granulocyte-macrophage colony-stimulating factor in combination with pentavalent antimony for the treatment of visceral leishmaniasis. Eur J Clin Microbiol Infect Dis 2:S23–S28

    Article  Google Scholar 

  30. 30.

    Islamuddin M, Farooque A, Dwarakanath BS, Sahal D, Afrin F (2012) Extracts of Artemisia annua leaves and seeds mediate programmed cell death in Leishmania donovani. J Med Microbiol 61:1709–1718. https://doi.org/10.1099/jmm.0.049387-0

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Mali RG, Dhake AS (2011) Evaluation of effects of Bauhinia variegata stem bark extracts against milk-induced eosinophilia in mice. J Adv Pharm Technol Res 2:132–134. https://doi.org/10.4103/2231-4040.82949

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Uddin G, Sattar S, Rauf A (2012) Preliminary phytochemical, in vitro pharmacological study of Bauhinia alba and Bauhinia variegata flowers. Middle-East J Med Plants Res 1:75–79. https://doi.org/10.5829/idosi.mejmpr.2011.1.4.1117

    Google Scholar 

  33. 33.

    Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK (2013) Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int. https://doi.org/10.1155/2013/915436

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Da Silva BJM, Pereira SWG, Rodrigues APD, Do Nascimento JLM, Silva EO (2018) In vitro antileishmanial effects of Physalis angulata root extract on Leishmania infantum. J Integr Med 16:404–410. https://doi.org/10.1016/j.joim.2018.08.004

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Islamuddin M, Chouhan G, Want MY, Tyagi M, Abdin MZ, Sahal D, Afrin F (2014) Leishmanicidal activities of Artemisia annua leaf essential oil against visceral leishmaniasis. Front Microbiol 5:626. https://doi.org/10.3389/fmicb.2014.00626

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Chouhan G, Islamuddin M, Want MY, Ozbak HA, Hemeg HA, Sahal D, Afrin F (2015) Leishmanicidal activity of Piper nigrum bioactive fractions is interceded via apoptosis in vitro and substantiated by Th1 immunostimulatory potential in vivo. Front Microbiol 6:1368. https://doi.org/10.3389/fmicb.2015.01368

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Aloui Z, Messaoud C, Haoues M, Neffati N, BassoumiJamoussi I, Essafi-Benkhadir K, Boussaid M, Guizani I, Karoui H (2016) Asteraceae Artemisia campestris and Artemisia herba-alba essential oils trigger apoptosis and cell cycle arrest in Leishmania infantum promastigotes. Evid-Based Complement Altern Med 2016:1–15. https://doi.org/10.1155/2016/9147096

    Article  Google Scholar 

  38. 38.

    Sharma RK, Rajani GP, Sharma V, Komala N (2011) Effect of ethanolic and aqueous extracts of Bauhinia variegata Linn. on gentamicin-induced nephrotoxicity in rats. Ind J Pharm Edu Res 45(2):192–198

    Google Scholar 

  39. 39.

    Pandey S (2017) In vivo antitumor potential of extracts from different parts of Bauhinia variegatalinn. Against b16f10 melanoma tumour model in c57bl/6 mice. Appl Cancer Res 37(1):33. https://doi.org/10.1186/s41241-017-0039-3

    Article  Google Scholar 

  40. 40.

    Singh OP, Gidwani K, Kumar R, Nylén S, Jones SL, Boelaert M, Sacks D, Sundar S (2012) Reassessment of immune correlates in human visceral leishmaniasis as defined by cytokine release in whole blood. Clin Vaccine Immunol 19(6):961–966. https://doi.org/10.1128/CVI.00143-12

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Stober CB, Jeronimo SM, Pontes NN, Miller EN, Blackwell JM (2012) Cytokine responses to novel antigens in a peri-urban population in Brazil exposed to Leishmania infantum chagasi. Am J Trop Med Hyg 87(4):663–670. https://doi.org/10.4269/ajtmh.2012.12-0180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Monzote L, Montalvo AM, Almanonni S, Scull R, Miranda M, Abreu J (2006) Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52(3):130–136. https://doi.org/10.1159/000092858

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Monzote L, García M, Scull R, Cuellar A, Setzer WN (2014) Antileishmanial activity of the essential oil from Bixaorellana. Phytother Res 28(5):753–758. https://doi.org/10.1002/ptr.5055

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Nylén S, Kumar R (2012) Immunobiology of visceral leishmaniasis. Front Immunol 3:251. https://doi.org/10.3389/fimmu.2012.00251

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sachdeva H, Sehgal R, Kaur S (2014) Asparagus racemosus ameliorates cisplatin induced toxicities and augments its antileishmanial activity by immunomodulation in vivo. Parasitol Int 63(1):21–30. https://doi.org/10.1016/j.parint.2013.09.016

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Goto H, Prianti MDG (2009) Immunoactivation and immunopathogeny during active visceral leishmaniasis. Revista do Instituto de Medicina Tropical de São Paulo 51(5):241–246. https://doi.org/10.1590/S0036-46652009000500002

    PubMed  Article  Google Scholar 

  47. 47.

    Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, Mitra K, Sundar S, Siddiqi MI, Dube A (2014) Characterization of glycolytic enzymes-rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. PLoS ONE 9(1):e86073. https://doi.org/10.1371/journal.pone.0086073

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Gautam S, Kumar R, Maurya R, Nylén S, Ansari N, Rai M, Sundar S, Sacks D (2011) IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J Infect Dis 204(7):1134–1137. https://doi.org/10.1093/infdis/jir461

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Osorio EY, Travi BL, da Cruz AM, Saldarriaga OA, Medina AA, Melby PC (2014) Growth factor and Th2 cytokine signaling pathways converge at STAT6 to promote arginase expression in progressive experimental visceral leishmaniasis. PLoS Pathog 10(6):e1004165. https://doi.org/10.1371/journal.ppat.1004165

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Mesquita I, Ferreira C, Barbosa AM, Ferreira CM, Moreira D, Carvalho A, Cunha C, Rodrigues F, Dinis-Oliveira RJ, Estaquier J, Castro AG (2018) The impact of IL-10 dynamic modulation on host immune response against visceral leishmaniasis. Cytokine 112:16–20. https://doi.org/10.1016/j.cyto.2018.07.001

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK (2019) Cytokines: key determinants of resistance or disease progression in visceral leishmaniasis: opportunities for novel diagnostics and immunotherapy. Front Immunol 10:670. https://doi.org/10.3389/fimmu.2019.00670

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Chandrasekaran S, Veronica J, Sundar S, Maurya R (2017) Alcoholic fractions F5 and F6 from Withania somnifera leaves show a potent antileishmanial and immunomodulatory activities to control experimental visceral leishmaniasis. Front Med 4:55. https://doi.org/10.3389/fmed.2017.00055

    Article  Google Scholar 

  53. 53.

    Oliveira MJ, Júnior GBS, Abreu KLS, Rocha NA, Garcia AVV, Franco LF, Daher EF (2010) Risk factors for acute kidney injury in visceral leishmaniasis (Kala-Azar). Am J Trop Med Hyg 82(3):449–453. https://doi.org/10.4269/ajtmh.2010.09-0571

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sundar S, Chakravarty J (2015) An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 16(2):237–252. https://doi.org/10.1517/14656566.2015.973850

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to University Grants Commission-Basic Scientific Research (UGC-BSR) and Department of Science and Technology- Fund for Improvement of S&T Infrastructure (DST-FIST)(SR/FST/LSI-545/2012(C) for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sukhbir Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Chauhan, K., Anand, N. et al. Evaluation of In vitro and In vivo Protective Efficacy of Bauhinia variegata Against Leishmania donovani in Murine Model. Acta Parasit. (2021). https://doi.org/10.1007/s11686-020-00326-8

Download citation

Keywords

  • Visceral leishmaniasis
  • Bauhinia variegata
  • Th1 cytokines
  • Sub-G0/G1 phase
  • DTH responses
  • CD8+ T cells