Phylogenetic Affinities and Infection Patterns of Goussia Infecting Sardina pilchardus from the NE Atlantic

Abstract

Purpose

European pilchard (Sardina pilchardus) is a highly valued fish in many European countries, particularly in Portugal. Despite current stock declines and the threats coccidia pose to European pilchards (e.g. castration), little is known about coccidian parasites infecting pilchards captured off the Portuguese coast.

Methods

In this study, we analyzed the infection patterns, the morphology of oocysts and the phylogenetic relations of coccidian parasites from European pilchard captured in Northern Portugal.

Results

Only Goussia oocysts were detected in infected tissues and prevalence of infection was 64% (n = 61). Oocysts were detected primarily in the liver with fewer infections in the stomach, intestine and gonads. No differences were found in the prevalence between seasons. Phylogenetic analysis showed these parasites are closely related to Goussia clupearum, placing them within a recently described group of Goussia, the clupearum type.

Conclusions

Our study provides more data on Goussia from the clupearum type with phylogenetic analysis indicating that these parasites cluster according to fish host taxonomy, thus suggesting some degree of co-evolution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of Data and Materials

All sequences generated in this work are deposited in GenBank (accession numbers MW006822-MW006829).

Code Availability

Not applicable.

References

  1. 1.

    Steinhagen D, Davies A (2008) Diseases caused by apicomplexans. In: Eiras J, Segner H, Wahli T, Kapoor B (eds) Fish diseases. Science Publishers, Enfield, pp 527–567

    Google Scholar 

  2. 2.

    Lom J, Dyková I (1992) Protozoan parasites of fishes. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  3. 3.

    Lom J, Dyková I (1995) Studies on protozoan parasites of Australian fishes. Notes on coccidian parasites with description of three new species. Syst Parasitol 31(2):147–156. https://doi.org/10.1007/BF02185546

    Article  Google Scholar 

  4. 4.

    Davies AJ, Ball SJ (1993) The Biology of Fish Coccidia. In: Baker JR, Muller R (eds) Advances in Parasitology, vol 32. Academic Press, pp 293–366. doi.org/https://doi.org/10.1016/S0065-308X(08)60210-9

  5. 5.

    Overstreet RM, Hawkins WE, Fournie JW (1984) The Coccidian genus Calyptospora n. g. and family Calyptosporidae n. fam. (Apicomplexa), with members infecting primarily fishes1. J Protozool 31:332–339. https://doi.org/10.1111/j.1550-7408.1984.tb02972.x

    Article  Google Scholar 

  6. 6.

    Handjar H, Niar A, van der Meer J (2019) The European pilchard Sardina pilchardus (Walbaum, 1792) stock off the western Algerian coast is fully exploited. J Sea Res 150–151:1–7. https://doi.org/10.1016/j.seares.2019.04.002

    Article  Google Scholar 

  7. 7.

    Kalfa-Papaioannou AM, Athanassopoulou-Raptopoulou F (1984) Incidence of coccidiosis in horse-mackerel (Trachurus trachurus, T. mediterraneus, T. picturatus) and sardines (Clupea pilchardus) from the North Aegean Sea. Zentralblatt Veterinärmedizin Reihe B 31(1–10):530–536. https://doi.org/10.1111/j.1439-0450.1984.tb01333.x

    CAS  Article  Google Scholar 

  8. 8.

    Pinto JS (1956) Parasitic castration in males of Sardina pilchardus (Walb) due to testicular infestation by the coccidia Eimeria sardinae (Thél.). Rev Fac Ciênc Lisb 44:209–228

    Google Scholar 

  9. 9.

    Abollo E, Calvo M, Pascual S (2001) Hepatic coccidiosis of the blue whiting, Micromesistius poutassou (Risso), and horse mackerel, Trachurus trachurus (L.), from Galician waters. J Fish Dis 24(6):335–343. https://doi.org/10.1046/j.1365-2761.2001.00298.x

    CAS  Article  Google Scholar 

  10. 10.

    Costa G, MacKenzie K, Pike AW (1991) New host and locality records for two protozoan (Myxosporea, Coccidia) parasites of marine fishes. J Parasitol 77(2):318–319

    CAS  Article  Google Scholar 

  11. 11.

    Diouf JN, Toguebaye BS (1993) Studies of coccidian parasites of fish from the coast of Senegal (West Africa): new species of the genus Goussia (Apicomplexa, Eucoccidiida, Calyptosporidae). Zool Scr 22(2):117–126. https://doi.org/10.1111/j.1463-6409.1993.tb00346.x

    Article  Google Scholar 

  12. 12.

    Azevedo C (2001) Fine structure of sporogonic stages of Goussia clupearum (Apicomplexa: Eimeriidae) in the liver of infected fish (Belone belone L.), using light and electron microscopy. Parasitol Res 87(4):326–330. https://doi.org/10.1007/PL00008586

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Xavier R, Cardoso J, Barroso R, Nogueira S, Cruz C, Pereira A, Saraiva A (2020) Effects of Goussia infecting the blue whiting and phylogenetic placement of Goussia infecting marine fish off Northern Portugal. Parasitol Res 119(7):2139–2147. https://doi.org/10.1007/s00436-020-06727-y

    Article  PubMed  Google Scholar 

  14. 14.

    Morrison CM (1991) Further observations on the sporogony of Eimeria sardinae in the testis of the herring Clupea harengus L. Can J Zool 69(4):1017–1024. https://doi.org/10.1139/z91-147

    Article  Google Scholar 

  15. 15.

    Diouf JN, Toguebaye BS (1994a) Eimeria sardinae Reichenow, 1921 (Apicomplexa, Coccidia) infection in Sardinella maderensis (Lowe, 1839) (Clupeidae) from the Senegal coast. Bull Eur Assoc Fish Pathol 14:41–43

    Google Scholar 

  16. 16.

    Diouf JN, Toguebaye BS (1994b) Study of some marine fish coccidia of the genus Eimeria Schneider, 1815 (Apicomplexa, Coccidia) from Senegal coasts. Acta Protozool 33:239–250

    Google Scholar 

  17. 17.

    McGladdery SE (1987) Potential of Eimeria sardinae (Apicomplexa: Eimeriidae) oocysts for distinguishing between spawning groups and between first- and repeat-spawning Atlantic herring (Clupea harengus harengus). Can J Fish Aquat Sci 44:1379–1385

    Article  Google Scholar 

  18. 18.

    Tolonen A, Karlsbakk E (2003) Parasites of herring (Clupea harengus L.) larvae from a local Norwegian fjord stock. Sarsia 88(2):154–157. https://doi.org/10.1080/00364820310001327

    Article  Google Scholar 

  19. 19.

    Reed C, MacKenzie K, van der Lingen CD (2012) Parasites of South African sardines, Sardinops sagax, and an assessment of their potential as biological tags. Bull Eur Assoc Fish Pathol 32:41–48

    Google Scholar 

  20. 20.

    Van Der Lingen CD, Weston LF, Ssempa NN, Reed CC (2014) Incorporating parasite data in population structure studies of South African sardine Sardinops sagax. Parasitology 142(1):156–167. https://doi.org/10.1017/S0031182014000018

    Article  Google Scholar 

  21. 21.

    Ujvari B, Madsen T, Olsson M (2004) High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. J Parasitol 90(3):670–672. https://doi.org/10.1645/ge-204r

    Article  PubMed  Google Scholar 

  22. 22.

    Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Br Bioinform 20(4):1160–1166. https://doi.org/10.1093/bib/bbx108

    CAS  Article  Google Scholar 

  23. 23.

    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772. https://doi.org/10.1038/nmeth.2109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  Google Scholar 

  25. 25.

    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Friend SE, Lovy J, Hershberger PK (2016) Disease surveillance of Atlantic herring: molecular characterization of hepatic coccidiosis and a morphological report of a novel intestinal coccidian. Dis Aquat Organ 120(2):91–107. https://doi.org/10.3354/dao03016

    Article  PubMed  Google Scholar 

  27. 27.

    Xavier R, Severino R, Pérez-Losada M, Gestal C, Freitas R, Harris DJ, Veríssimo A, Rosado D, Cable J (2018) Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasit Vectors 11(1):63. https://doi.org/10.1186/s13071-018-2645-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    da Silva MF, de Araújo RS, da Silva DT, Sanches O, Hamoy I, Matos E (2019) Gastric coccidiosis in Thoracocharax stellatus caused by Goussia guamaensis n. sp. (Apicomplexa: Eimeriidae) from the Amazon region. J Fish Dis 42(6):905–912. https://doi.org/10.1111/jfd.12992

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Rosenthal BM, Dunams-Morel D, Ostoros G, Molnár K (2016) Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates. Infect Genet Evol 40:219–227. https://doi.org/10.1016/j.meegid.2016.02.018

    Article  PubMed  Google Scholar 

  30. 30.

    Molnár K, Ostoros G, Dunams-Morel D, Rosenthal BM (2012) Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infect Genet Evol 12(8):1810–1815. https://doi.org/10.1016/j.meegid.2012.06.017

    Article  PubMed  Google Scholar 

  31. 31.

    Whipps CM, Fournie JW, Morrison DA, Azevedo C, Matos E, Thebo P, Kent ML (2012) Phylogeny of fish-infecting Calyptospora species (Apicomplexa: Eimeriorina). Parasitol Res 111(3):1331–1342. https://doi.org/10.1007/s00436-012-2969-8

    Article  PubMed  Google Scholar 

  32. 32.

    Matsche AM, Cynthia RA, Vicki SB (2019) Newly described Coccidia Goussia bayae from white perch Morone americana: morphology and phylogenetics support emerging taxonomy of Goussia within piscine hosts. J Parasitol 105(1):1–10. https://doi.org/10.1645/18-67

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Xavier R, Santos JL, Veríssimo A (2018) Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts. Syst Parasitol 95(4):367–371. https://doi.org/10.1007/s11230-018-9790-4

    Article  PubMed  Google Scholar 

Download references

Funding

This research was partially supported by national funds through FCT-Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020; by the European Regional Development Fund (ERDF) through the COMPETE program and national funds through FCT-Foundation for Science and Technology (project PTDC/BIA-MIC/27995/2017 POCI-01-0145-FEDER-027995); and the Programa Operacional Potencial Humano—Quadro de Referência Estratégico Nacional funds from the European Social Fund and Portuguese Ministério da Educação e Ciência (RX: IF/00359/2015; AP doctoral grant: SFRH/BD/144928/2019).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Raquel Xavier or Aurélia Saraiva.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xavier, R., Barroso, R., Cardoso, J. et al. Phylogenetic Affinities and Infection Patterns of Goussia Infecting Sardina pilchardus from the NE Atlantic. Acta Parasit. (2021). https://doi.org/10.1007/s11686-020-00319-7

Download citation

Keywords

  • Goussia
  • 18S rRNA
  • Phylogeny
  • Morphology
  • Prevalence