First Survey on the Presence and Distribution of Oxytetracycline-Resistance Genes in Anaplasma Species



Anaplasma sp. is an obligatory intracellular Gram-negative tick-transmitted bacterial pathogen of humans and animals. Oxytetracycline and chlortetracycline are the drugs of choice for treating domestic animals with acute anaplasmosis. Lack of documented information about oxytetracycline resistance in Anaplasma species in the world was the scope of this study to screen by PCR for the detection of the oxytetracycline-resistance genes in Anaplasma species from infected cattle and sheep in the Northwest and Southwest of Iran.

Materials and Methods

Total of 100 cattle and sheep blood samples collected from 2 provinces in the Northwest and 1 province in the Southwest of Iran were tested microscopically by the Giemsa staining examination and confirmed by PCR. Then the presence of two different oxytetracycline-resistance genes (otrA, and otrB) was detected by PCR in positive samples.


The results showed that 60% of Anaplasma-infected samples were identified to have an otrA-resistance gene, and 26.67% had an otrB-resistance gene. The coexistence of two oxytetracycline-resistance determinants was encountered in 13.33% of the isolates. The significant difference in the frequency of otr genes was found among three Anaplasma species (A. marginale, A. centrale and A. ovis), and among three studied regions in Iran (p < 0.05). The identified sequences were submitted to the GenBank and deposited under accession numbers MN880729 and MN895439 for otrB and otrA genes.


This study, for the first time, indicated the oxytetracycline-resistance genes in the three most prevalent Anaplasma species in ruminants. This finding helps to select an appropriate treatment strategy for eradication of anaplasmosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families’ Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51(6):2145–2165.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, Grab DJ, Bakken JS (2005) Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis 11:1828–1834.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zhan L, Cao WC, Jiang JF, Zhang XA, Wu XM, Zhang WY, Liu W, Zuo SQ, Cao ZW, Yang H, Richardus JH, Habbema JD (2010) Anaplasma phagocytophilum in livestock and small rodents. Vet Microbiol 144:405–408.

    Article  PubMed  Google Scholar 

  4. 4.

    Palmer GH (1989) Anaplasma vaccines. In: Wright IG (ed) Veterinary protozoan and hemoparasite vaccines. CRC Press, Boca Raton, pp 2–29

    Google Scholar 

  5. 5.

    Aktas M, Özübek S (2017) Outbreak of anaplasmosis associated with novel genetic variants of Anaplasma marginale in a dairy cattle. Com Immuno Microbiol Infect Dis (CIMID) 54:20–26

    Article  Google Scholar 

  6. 6.

    Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA (2010) The natural history of Anaplasma marginale. Vet Parasitol 167(2–4):95–107.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Bayley AJ (2005) Compendium of veterinary products, 8th edn. North American Compendiums INC, Port Huron

    Google Scholar 

  8. 8.

    Chopra I, Roberts MC (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kuttler KL, Simpson JE (1978) Relative efficacy of two oxytetracycline formulations and doxycycline in the treatment of acute anaplasmosis in splenectomized calves. Am J Vet Res 39:347–349 (PMID: 629473)

    CAS  PubMed  Google Scholar 

  10. 10.

    Stewart CG, Immelman A, Grimbeek P, Grib D (1979) The use of a short and long- acting oxytetracycline for the treatment of Anaplasma marginale in splenectomized calves. J S Afr Vet Assoc 50:83–85 (PMID: 551196)

    CAS  PubMed  Google Scholar 

  11. 11.

    Brayton KA, Kappmeyer LS, Herndon DR, Dark MJ, Tibbals DL, Pamer GH, McGuire TC, Knowles DP Jr (2005) Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two super families of outer membrane proteins. Proc Nat Acad Sci USA 102:844–849.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Michalova E, Novotna P, Schlegelova J (2004) Tetracyclines in veterinary medicine and bacterial resistance to them. Vet Med 49(3):79–100.

    CAS  Article  Google Scholar 

  13. 13.

    Jones CH, Tuckman M, Howe AY (2006) Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of Tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 50:505–510.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Roberts MC, Schwarz S, Aarts HJM (2012) Erratum: acquired antibiotic resistance genes: an overview. Front Microbiol 384:1–17.

    Article  Google Scholar 

  16. 16.

    Pickens LB, Tang Y (2010) Oxytetracycline biosynthesis. J Biol Chem 285:27509–27515.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Roberts MC, Schwarz S (2009) Tetracycline and chloramphenicol resistance mechanisms. In: Douglas L, Mayers MD (eds) Antimicrobial drug resistance. Springer, New York, pp 183–193.

    Google Scholar 

  18. 18.

    Doyle D, McDowall KJ, Butler MJ, Hunter IS (1991) Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol 5:2923–2933.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Jalali SM, Khaki Z, Kazemi B, Bandehpour M, Rahbari S, Razi Jalali M, Yasini SP (2013) Molecular detection and identification of Anaplasma species in sheep from Ahvaz, Iran. Iran J Vet Res 14(1):50–56.

    Article  Google Scholar 

  20. 20.

    Ghatak S, Muthukumaran RB, Nachimuthu SK (2013) A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech 24(4):224.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Aktas M, Ozubek S (2018) Anaplasma ovis genetic diversity detected by major surface protein 1a and its prevalence in small ruminants. Vet Microbiol 217:13–17.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    de La Fuente J, Golsteyn Thomas EJ, Van Den Bussche RA, Hamilton RG, Tanaka EE, Druhan SE, Kocan KM (2003) Characterization of Anaplasma marginale isolated from North American bison. Appl Environ Microbiol 69:5001–5005.

    Article  PubMed Central  Google Scholar 

  23. 23.

    de La Fuente J, Ruybal P, Mtshali MS, Naranjo V, Shuqing L, Mangold AJ, Rodríguez SD, Jiménez R, Vicente J, Moretta R, Torina A et al (2007) Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. Vet Microbiol 119(2–4):382–390.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K, Itagaki A, Hiramitsu Y, Tajima T (2006) Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 72(2):1102–1109.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Han R, Yang J, Liu Z, Gao S, Niu Q, Adeel Hassan M, Luo J, Yin H (2017) Characterization of Anaplasma ovis strains using the major surface protein 1a repeat sequences. Parasit Vectors 10:447.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Nikolakopoulou TL, Egan SH, Van Overbeek LS, Guillaume G, Heuer H, Wellington EMH, Van Elsas JD, Collard JM, Smalla K, Karagouni AD (2005) PCR detection of oxytetracycline resistance genes otr (A) and otr (B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr Microbiol 51:211–216.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Nouri S, Shahbazi P (2020) Distribution of oxytetracycline resistance genes in E. coli isolated from pigeon fecal samples. J Exotic Pet Med 33:14–17

    Article  Google Scholar 

  28. 28.

    Dugan J, Daniel D, Rockey DD, Jones L, Andersen AA (2004) Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the Chlamydial inv-like gene. Antimicrob Agents Chemother 48(10):3989–3995.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yin S, Wang X, Shi M, Yuan F, Wang H, Jia X, Yuan F, Sun J, Liu T, Yang K, Zhang Y, Fan K, Li Z (2017) Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60(9):992–999.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Noaman V, Bastani D (2016) Molecular study on infection rates of Anaplasma ovis and Anaplasma marginale in sheep and cattle in West-Azerbaijan province. Iran Vet Res Forum 7(2):163–167

    PubMed  Google Scholar 

  31. 31.

    Khumalo ZTH, Catanese HN, Liesching N, Hove P, Collins NE, Chaisi ME, Gebremedhin AH, Oosthuizen MC, Brayton KA (2016) Characterization of Anaplasma marginale subsp. centrale strains by use of msp1aS genotyping reveals a wildlife reservoir. J Clin Microbiol 54:2503–2512.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hakimi H, Sarani A, Takeda M, Kaneko O, Asada M (2019) Epidemiology, risk factors, and co-infection of vector-borne pathogens in goats from Sistan and Baluchestan province. Iran. PLoS One 14(6):e0218609.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Jafar Bekloo A, Bakhshi H, Soufizadeh A, Sedaghat MM, Jafar Bekloo R, Ramzgouyan MR, Chegeni HA, Faezeh Faghihi F, Telmadarraiy Z (2017) Ticks circulate Anaplasma, Ehrlichia, Babesia and Theileria parasites in North of Iran. Vet Parasit 248:21–24.

    Article  Google Scholar 

  34. 34.

    Bursakov SA, Kovalchuk NS (2019) Co-infection with tick-borne disease agents in cattle in Russia. Ticks Tick Borne Dis 10(3):709–713.

    Article  PubMed  Google Scholar 

  35. 35.

    Zhou M, Cao S, Sevinc F, Sevinc M, Ceylan O, Ekici S, Jirapattharasate C, Moumouni PFA, Liu M, Wang G, Iguchi A, Udriko P, Suzuki H, Xuan X (2017) Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey. Ticks Tick Borne Dis 8(2):246–252.

    Article  PubMed  Google Scholar 

  36. 36.

    Renneker S, Abdo J, Bakheit MA, Kullmann B, Beyer D, Ahmed J, Seitzer U (2013) Coinfection of Sheep with Anaplasma, Theileria and Babesia Species in the Kurdistan Region, Iraq. Transbound Emerg Dis 60(Suppl. 2):113–118.

    Article  PubMed  Google Scholar 

  37. 37.

    Spooner PR (1990) The effects of oxytetracycline on Theileria parva in vitro. Parasite 100(1):11–17.

    CAS  Article  Google Scholar 

  38. 38.

    Hasheminasab SS, Moradi P, Wright I (2018) Four year epidemiological and chemotherapy survey of babesiosis and theileriosis, and tick vectors in sheep, cattle and goats in Dehgolan, Iran. Ann Parasitol 64(1):43–48.

    Article  PubMed  Google Scholar 

  39. 39.

    Coetzee JF, Apley MD, Kocan KM, Rurangirwa FR, Van Donkersgoed J (2005) Comparison of three oxytetracycline regimens for the treatment of persistent Anaplasma marginale infections in beef cattle. Vet Parasitol 127:61–73.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors are grateful to University of Tabriz (Grant no. 433296787) for financial supporting and to Katiraee. F for assistance in the submission of the otr genes in the GenBank.

Author information



Corresponding author

Correspondence to Parisa Shahbazi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest between them.

Ethical approval

This study was undertaken by bioethics committee of University of Tabriz and accomplished according to the guidelines for the care and use of animals in research by

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, P., Nouri Gharajalar, S., Mohebbi, K. et al. First Survey on the Presence and Distribution of Oxytetracycline-Resistance Genes in Anaplasma Species. Acta Parasit. (2020).

Download citation


  • Anaplasma
  • Oxytetracycline
  • Drug resistance
  • Genes
  • Livestock
  • Iran