Immune Response of Mice Against Babesia canis Antigens is Enhanced When Antigen is Coupled to Gold Nanoparticles

Abstract

Purpose

The aim of this study was to isolate Babesia canis soluble antigens and to investigate the effect of their conjugates with gold nanoparticles on the immunogenicity in laboratory animals.

Methods

A procedure was developed for isolating and purifying B. canis antigens. The isolated culture antigen of B. canis 495 was coupled to gold nanoparticles, and the conjugate was used to immunize laboratory mice.

Results

Western blotting showed that the resultant antiserum specifically recognized the proteins of the B. canis strains isolated from naturally infected dogs. The antibody titer, the respiratory activity of peritoneal macrophages, the proliferative activity of splenocytes, and the production of cytokines were maximal when the animals were immunized with the antigen–nanoparticle conjugate emulsified in complete Freund’s adjuvant. Without adjuvant, the babesial antigen was weakly immunogenic.

Conclusion

Therefore, the use of gold nanoparticles as an antigen carrier induced a broad immune response involving both cellular and humoral responses. The antibodies raised by the proposed procedure are potentially effective at immunodetection of Babesia canis infections in dogs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Adaszek Ł, Winiarczyk S (2011) In vitro cultivation of Babesia canis canis parasites isolated from dogs in Poland. Parasitol Res 108:1303–1307. https://doi.org/10.1007/s00436-010-2181-7

    Article  PubMed  Google Scholar 

  2. 2.

    Azzar G, Radisson J, Got R (1990) Characterization and purification of culture-derived soluble glycoproteins of Babesia canis. Parasitol Res 76:578–580. https://doi.org/10.1007/BF00932565

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Babeş V (1888) Sur l’hémoglobinurie bactérienne du boeuf. C R Acad Hebd Séances Acad Sci 107:692–694

    Google Scholar 

  4. 4.

    Baneth G, Florin-Christensen M, Cardoso L, Schnittger L (2015) Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit Vectors 8:207. https://doi.org/10.1186/s13071-015-0830-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bernas T, Dobrucki JW (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380:108–116. https://doi.org/10.1006/abbi.2000.1907

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Carabineiro SAC (2017) Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules 22:857. https://doi.org/10.3390/molecules22050857

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Comber JD, Bamezai A (2015) Gold nanoparticles (AuNPs): a new frontier in vaccine delivery. J Nanomedine Biotherapeutic Discov 5:4. https://doi.org/10.4172/2155-983X.1000e139

    Article  Google Scholar 

  8. 8.

    Dalrymple BP, Casu RE, Peters JM, Dimmock CM, Gale KR, Boese R, Wright IG (1993) Characterisation of a family of multi-copy genes encoding rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. Mol Biochem Parasitol 57:181–192. https://doi.org/10.1016/0166-6851(93)90194-3

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dykman LA (2020) Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 19:464–477. https://doi.org/10.1080/14760584.2020.1758070

    CAS  Article  Google Scholar 

  10. 10.

    Dykman LA, Staroverov SA, Bogatyrev VA, Shchyogolev SY (2010) Adjuvant properties of gold nanoparticles. Nanotechnol Russ 5:748–761. https://doi.org/10.1134/S1995078010110029

    Article  Google Scholar 

  11. 11.

    Dykman LA, Khlebtsov NG (2017a) Immunological properties of gold nanoparticles. Chem Sci 8:1719–1735. https://doi.org/10.1039/C6SC03631G

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Dykman LA, Khlebtsov NG (2017b) Gold nanoparticles in biomedical applications. CRC Press, Boca Raton

    Google Scholar 

  13. 13.

    Dykman LA, Khlebtsov NG (2019) Methods for chemical synthesis of colloidal gold. Russ Chem Rev 88:229–247. https://doi.org/10.1070/RCR4843

    CAS  Article  Google Scholar 

  14. 14.

    Eichenberger RM, Štefanić S, Naucke TJ, Šarkūnas M, Zamokas G, Grimm F, Deplazes P (2017) An ELISA for the early diagnosis of acute canine babesiosis detecting circulating antigen of large Babesia spp. Vet Parasitol 243:162–168. https://doi.org/10.1016/j.vetpar.2017.06.030

    Article  PubMed  Google Scholar 

  15. 15.

    Facciolà A, Visalli G, Laganà P, La Fauci V, Squeri R, Pellicanò GF, Nunnari G, Trovato M, Di Pietro A (2019) The new era of vaccines: the “nanovaccinology.” Eur Rev Med Pharmacol Sci 23:7163–7182. https://doi.org/10.26355/eurrev_201908_18763

    Article  PubMed  Google Scholar 

  16. 16.

    Furuta PI, Oliveira TM, Teixeira MC, Rocha AG, Machado RZ, Tinucci-Costa MG (2009) Comparison between a soluble antigen-based ELISA and IFAT in detecting antibodies against Babesia canis in dogs. Rev Bras Parasitol Vet 18:41–45. https://doi.org/10.4322/rbpv.01803007

    Article  Google Scholar 

  17. 17.

    Jalovecka M, Sojka D, Ascencio M, Schnittger L (2019) Babesia life cycle—when phylogeny meets biology. Trends Parasitol 35:356–368. https://doi.org/10.1016/j.pt.2019.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lehtinen LE, Birkenheuer AJ, Droleskey RE, Holman PJ (2008) In vitro cultivation of a newly recognized Babesia sp. in dogs in North Carolina. Vet Parasitol 151:150–157. https://doi.org/10.1016/j.vetpar.2007.10.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Leiter EH (1997) The NOD mouse: a model for insulin dependent diabetes mellitus. Curr Protoc Immunol 24:15.9.1-15.9.23. https://doi.org/10.1002/0471142735.im1509s24

    Article  Google Scholar 

  21. 21.

    Livanova NN, Fomenko NV, Akimov IA, Ivanov MJ, Tikunova NV, Armstrong R, Konyaev SV (2018) Dog survey in Russian veterinary hospitals: tick identification and molecular detection of tick-borne pathogens. Parasit Vectors 11:591. https://doi.org/10.1186/s13071-018-3161-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Martinod S, Laurent N, Moreau Y (1986) Resistance and immunity of dogs against Babesia canis in an endemic area. Vet Parasitol 19:245–254. https://doi.org/10.1016/0304-4017(86)90072-5

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Matijatko V, Torti M, Schetters TP (2012) Canine babesiosis in Europe: how many diseases? Trends Parasitol 28:99–105. https://doi.org/10.1016/j.pt.2011.11.003

    Article  PubMed  Google Scholar 

  24. 24.

    Molinar E, James MA, Kakoma I, Holland C, Ristic M (1982) Antigenic and immunogenic studies on cell culture-derived Babesia canis. Vet Parasitol 10:29–40. https://doi.org/10.1016/0304-4017(82)90004-8

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Moreau Y, Vidor E, Bissuel G, Dubreuil N (1989) Vaccination against canine babesiosis: an overview of field observations. Trans R Soc Trop Med Hyg 83:95–96. https://doi.org/10.1016/0035-9203(89)90611-1

    Article  PubMed  Google Scholar 

  26. 26.

    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Moubri K, Kleuskens J, Van de Crommert J, Scholtes N, Van Kasteren T, Delbecq S, Carcy B, Précigout E, Gorenflot A, Schetters T (2018) Discovery of a recombinant Babesia canis supernatant antigen that protects dogs against virulent challenge infection. Vet Parasitol 249:21–29. https://doi.org/10.1016/j.vetpar.2017.11.002

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Nocard E, Motas C (1902) Contribution à l’étude de la piroplasmose canine. Ann Inst Pasteur 16:257–290

    Google Scholar 

  29. 29.

    Piana GP, Galli-Valerio B (1895) Su di un’ infezione del cane con parasiti endoglobulari. Mod Zooiatro 6:163–169

    Google Scholar 

  30. 30.

    Salazar-González JA, González-Ortega O, Rosales-Mendoza S (2015) Gold nanoparticles and vaccine development. Expert Rev Vaccines 14:1197–1211. https://doi.org/10.1586/14760584.2015.1064772

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Schetters TPM, Scholtes NC, Kleuskens JAGM, Bos HJ (1996) Not peripheral parasitaemia but the level of soluble parasite antigen in plasma correlates with vaccine efficacy against Babesia canis. Parasite Immunol 18:1–6. https://doi.org/10.1046/j.1365-3024.1996.d01-1.x

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Schetters TPM, Moubri K, Précigout E, Kleuskens J, Scholtes NC, Gorenflot A (1997) Different Babesia canis isolates, different diseases. Parasitology 115:485–493. https://doi.org/10.1017/S0031182097001686

    Article  PubMed  Google Scholar 

  33. 33.

    Schetters T (2005) Vaccination against canine babesiosis. Trends Parasitol 21:179–184. https://doi.org/10.1016/j.pt.2005.02.006

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sibinovic KH, Sibinovic S, Ristic M, Cox HW (1967) Immunogenic properties of babesial serum antigens. J Parasitol 53:1121–1129. https://doi.org/10.2307/3276666

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Tao W, Gill HS (2015) M2e-immobilized gold nanoparticles as influenza A vaccine: role of soluble M2e and longevity of protection. Vaccine 33:2307–2315. https://doi.org/10.1016/j.vaccine.2015.03.063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tewari AK, Mishra AK, Rao JR (2000) Isolation and purification of cationic proteins from microaerophilous stationary phase culture supernatants of Babesia bigemina. J Appl Anim Res 18:41–48. https://doi.org/10.1080/09712119.2000.9706322

    CAS  Article  Google Scholar 

  37. 37.

    Uilenberg G (2006) Babesia––a historical overview. Vet Parasitol 138:3–10. https://doi.org/10.1016/j.vetpar.2006.01.035

    Article  PubMed  Google Scholar 

  38. 38.

    Vijayan V, Mohapatra A, Uthaman S, Park I-K (2019) Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics 11:534. https://doi.org/10.3390/pharmaceutics11100534

    CAS  Article  PubMed Central  Google Scholar 

  39. 39.

    Wahlang L, Lakshmanan B, Thomas N, Bosewell A, Sunanda JJK, Aravindakshan TV (2019) Comparative analysis of conventional and real time PCR for detection of haemoparasites in dogs. Indian J Biotechnol 18:9–15

    CAS  Google Scholar 

  40. 40.

    Wang P, Song J, Song R, Zhang M, Wu L, Li F, Yan Y, Zhou J, Chahan B, Liao M (2019) Preparation of monoclonal antibodies against Bc48 and development of a rapid detection assay for infection with Babesia caballi in China. Folia Parasit 66:005. https://doi.org/10.14411/fp.2019.005

    CAS  Article  Google Scholar 

  41. 41.

    White MW, Suvorova ES (2018) Apicomplexa cell cycles: something old, borrowed, lost, and new. Trends Parasitol 34:759–771. https://doi.org/10.1016/j.pt.2018.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Wieser SN, Schnittger L, Florin-Christensen M, Delbecq S, Schetters T (2019) Vaccination against babesiosis using recombinant GPI-anchored proteins. Int J Parasitol 49:175–181. https://doi.org/10.1016/j.ijpara.2018.12.002

    CAS  Article  Google Scholar 

  43. 43.

    Yabsley MJ, Shock BC (2012) Natural history of Zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2:18–31. https://doi.org/10.1016/j.ijppaw.2012.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Yang Y-S, Murciano B, Moubri K, Cibrelus P, Schetters T, Gorenflot A, Delbecq S, Roumestand C (2012) Structural and functional characterization of Bc28.1, major erythrocyte–binding protein from Babesia canis merozoite surface. J Biol Chem 287:9495–9508. https://doi.org/10.1074/jbc.M111.260745

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhou M, Cao S, Luo Y, Liu M, Wang G, Moumouni PFA, Jirapattharasate C, Iguchi A, Vudriko P, Terkawi MA, Löwenstein M, Kern A, Nishikawa Y, Suzuki H, Igarashi I, Xuan X (2016) Molecular identification and antigenic characterization of a merozoite surface antigen and a secreted antigen of Babesia canis (BcMSA1 and BcSA1). Parasit Vectors 9:257. https://doi.org/10.1186/s13071-016-1518-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. D.N. Tychinin for his help in preparation of the manuscript.

Funding

This work was supported by the Russian Science Foundation (Grant no. 19-14-00077).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. A. Dykman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Staroverov, S.A., Fomin, A.S., Kozlov, S.V. et al. Immune Response of Mice Against Babesia canis Antigens is Enhanced When Antigen is Coupled to Gold Nanoparticles. Acta Parasit. (2020). https://doi.org/10.1007/s11686-020-00305-z

Download citation

Keywords

  • Babesia canis
  • Antigen
  • Gold nanoparticles
  • Immunization
  • Vaccine
  • Protective immunity