Skip to main content

Role of Glutathione in Chalcone Derivative Induced Apoptosis of Brugia malayi and its Possible Therapeutic Implication



Oxidative stress is an essential component of innate response against microbes. The oxidative impact has a very subtle connection with apoptosis. Our previous work indicated presumptive evidence of apoptosis by the chalcone derivatives against the human lymphatic filarial parasite. Evidence suggests the involvement of glutathione-S-transferase (GST) in the mechanism of action of chalcone drugs. In the present study, we explored the implications of redox status in apoptosis of the parasite by this drug.


Treatment with the representative drug, 4t, significantly decreased GSH level and increased GST activity in the Brugia malayi microfilariae (Mf) in comparison to Mf without 4t treatment. Drug-induced loss of motility of the parasites was reversed by the treatment with GSH (41%) and NAC (19%). A significant fall in rGST activity was observed due to drug addition, which could be reversed by the addition of GSH co-substrate, but not with the re-addition of rGST, indicating a vital role of GSH. In silico study demonstrated a favorable drug–GST enzyme interaction. Oxidative stress was reflected by increased protein carbonylation and intracellular reactive oxygen species level, in the drug-treated parasite. Mitochondrial oxygen consumption was reduced by the drug, which was reversed on the addition of GSH. Mitochondrial dysfunction was confirmed by MTT and cytochrome c assay. Apoptosis was confirmed by the inhibition in PARP activity.


We conclude that the depletion of GSH by chalcone with concomitant mitochondrial dysfunction revealed a novel rationale of apoptosis in the parasite. Such a mechanism might have wide therapeutic implications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Maizels RM, Denham DA (1992) Diethylcarbamazine (DEC): immunopharmacological interactions of an anti-filarial drug. Parasitology 105(S1):S49–S60.

    Article  PubMed  Google Scholar 

  3. World Health Organization (2017) Lymphatic filariasis: Fact sheet updated on March 2017. Accessed 13 Feb 2019

  4. Celone M (2015) Barriers to the elimination of lymphatic filariasis in Sub-Saharan Africa. Spring 5:26–32.

    Article  Google Scholar 

  5. Bhattacharjee J (2016) Mass drugs administration in India-a failure story. Epidemiology Open Access 6:252.

    Article  Google Scholar 

  6. Zuchi A, Prust LT, Rocha A, Araújo J, da Silva PS, Fiorillo K, Brandão E, Ximenes C, Lopes F, Ponzi CC (2017) Screening and evaluation of lymphatic filariasis in immigrants from endemic countries residing in a focus where it is considered eliminated in the Southern Region of Brazil: A risk of reemergence? Acta Trop 176:192–196.

    Article  PubMed  Google Scholar 

  7. Peixoto CA, Santos ACO, Ayres CFJ (2008) Molecular evidence for apoptosis in microfilariae of Wuchereria bancrofti induced by diethyl carbamazine. Parasitol Res 103:717.

    CAS  Article  PubMed  Google Scholar 

  8. Sharma RD, Janardhana PB, Gajalakshmi D, Reddy MV, Goswami K (2009) Novel pharmaceutical rationale against human lymphatic filarial parasite: an oxidative premise. Asian Pac J Trop Dis 2:30–34.

    CAS  Article  Google Scholar 

  9. Bahekar SP, Hande SV, Agrawal NR, Chandak HS, Bhoj PS, Goswami K, Reddy MV (2016) Sulfonamide chalcones: synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur J Med Chem 124:262–269.

    CAS  Article  PubMed  Google Scholar 

  10. Awasthi SK, Mishra N, Dixit SK, Singh A, Yadav M, Yadav SS, Rathaur S (2009) Antifilarial activity of 1,3-diarylpropen-1-one: effect on glutathione-S-transferase, a phase II detoxification enzyme. Am J Trop Med Hyg 80(5):764–768.

    CAS  Article  PubMed  Google Scholar 

  11. Özaslan MS, Demi Y, Aslan HE, Beydemir Ş, Küfrevioğlu Öİ (2018) Evaluation of chalcones as inhibitors of glutathione S-transferase. J Biochem Mol Toxicol 32(5):e22047.

    CAS  Article  PubMed  Google Scholar 

  12. Ash LR, Riley JM (1970) Development of subperiodic Brugia malayi in the jird, Meriones unguiculatus, with notes on infections in other rodents. J Parasitol 56(5):969–973.

    CAS  Article  PubMed  Google Scholar 

  13. Singh SK, Goswami K, Sharma RD, Reddy MV, Dash D (2012) Novel microfilaricidal activity of nanosilver. Int J Nanomedicine 7:1023–1030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Beutler E (1986) Red cell metabolism, methods in hematology. Churchill Livingstone, New York, pp 28–72

    Google Scholar 

  15. Van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10(3):255–262.

    Article  PubMed  Google Scholar 

  16. Rizvi SM, Shakil S, Haneef M (2013) A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians. Excli J 12:831

    PubMed  PubMed Central  Google Scholar 

  17. Bhoj PS, Ingle RG, Goswami K, Jena L, Wadher S (2018) Apoptotic impact on Brugia malayi by sulphonamido-quinoxaline: search for a novel therapeutic rationale. Parasitol Res 117(5):1559–1572.

    Article  PubMed  Google Scholar 

  18. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Article  Google Scholar 

  19. Bhandari P, Gowrishankar J (1997) An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J Bacteriol 179(13):4403–4406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478.

    CAS  Article  PubMed  Google Scholar 

  21. Nayak MK, Dash A, Singh N, Dash D (2014) Aspirin delimits platelet life span by proteasomal inhibition. PLoS ONE 9(8):e105049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Sonkar VK, Kulkarni PP, Dash D (2014) Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. The FASEB J 28(4):1819–1829.

    CAS  Article  PubMed  Google Scholar 

  23. Rao UR, Mehta K, Subrahmanyam D, Vickery AC (1991) Brugia malayi and Acanthocheilonema viteae: antifilarial activity of transglutaminase inhibitors in vitro. Antimicrob Agents Chemother 35:2219–2224.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12(4):483–499.

    CAS  Article  Google Scholar 

  25. Mathew N, Kalyanasundaram M, Balaraman K (2006) Glutathione S-transferase (GST) inhibitors. Expert Opin Ther Pat 16(4):431–444.

    CAS  Article  Google Scholar 

  26. Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci USA 98(6):3404–3409.

    CAS  Article  PubMed  Google Scholar 

  27. Liu YC, Hsieh CW, Wu CC, Wung BS (2007) Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile. Life Sci 80:1420–1430.

    CAS  Article  PubMed  Google Scholar 

  28. Tirona RG, Pang KS (1999) Bimolecular glutathione conjugation kinetics of ethacrynic acid in rat liver: in vitro and perfusion studies. J Pharmacol Exp Ther 290(3):1230–1241

    CAS  PubMed  Google Scholar 

  29. Ploemen JHTM, Ommen BV, Bogaards JJP, Van Bladeren PJ (1993) Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 23(8):913–923.

    CAS  Article  PubMed  Google Scholar 

  30. Ploemen JHTM, Van Schanke A, Van Ommen B, Van Bladeren PJ (1994) Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1–1. Can Res 54(4):915–919

    CAS  Google Scholar 

  31. Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochem Biophys Acta 5:3317–3328.

    CAS  Article  Google Scholar 

  32. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chaitanya GV, Alexander JS, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Perquin M, Oster T, Maul A, Froment N, Untereiner M, Bagrel D (2001) The glutathione-related detoxification system is increased in human breast cancer in correlation with clinical and histopathological features. J Cancer Res Clin Oncol 127(6):368–374.

    CAS  Article  PubMed  Google Scholar 

  36. Tagde A, Singh H, Kang MH, Reynolds CP (2014) The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J 4(7):e229.

    CAS  Article  Google Scholar 

Download references


We would like to extend our tribute to Late Dr. MVR Reddy, for his active contribution in this work.


This research work was supported by the funding received from DBT (BT/PR/4988/INF/22/155/2012) and DST-FIST (SR/FST/LSI-470/2010) of Government of India and UGC, New Delhi (41–335/2012(SR)).

Author information

Authors and Affiliations



PB, KG and HC conceived and designed the study. PB, SB, VK, NT and NS conducted experiments, collected the data and drafted the article. KG, HC and DD edited the article, approved the final article to be published.

Corresponding authors

Correspondence to K. Goswami or H. S. Chandak.

Ethics declarations

Conflicts of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhoj, P.S., Bahekar, S., Khatri, V. et al. Role of Glutathione in Chalcone Derivative Induced Apoptosis of Brugia malayi and its Possible Therapeutic Implication. Acta Parasit. 66, 406–415 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Apoptosis
  • Filarial parasite
  • Glutathione
  • Sulfonamide chalcone
  • Mitochondria