Skip to main content

Milk As a New Diagnostic Tool for Rapid Detection of Fascioliasis in Dairy Goats Using Excretory/Secretory Antigen

Abstract

Purpose

Fascioliasis is a serious livestock illness of particular importance for dairy goats; the objectives of this study were to describe effects of F. gigantica on milk composition and to use this information to estimate economic damages linked with Fasciola spp. infections. Furthermore, the study sought to standardize the use of milk instead of serum for early diagnosis of fascioliasis in dairy goats.

Methods

One-hundred samples of goat milk along with corresponding blood samples were obtained at random from flocks in Cairo and Giza Governorates. The ELISA and DOT-ELISA were performed in both serum and milk of dairy goats.

Results

Total mesophilic count (mean value) was 2.12 × 106 ± 1.63 × 105 CFU/ml in enzyme-linked immunosorbent assay (ELISA) positive samples and 1.46 × 104 ± 8.58 × 102 CFU/ml in ELISA-negative samples. The mean values were significantly different (P < 0.05). The mean values of percentages of fat, SNF, protein, salts, lactose, pH, and MSCC/ml in ELISA-positive samples were 2.3 ± 0.17, 8.21 ± 0.63, 3.08 ± 0.18, 0.90 ± 0.06, 3.64 ± 0.28, 6.93 + 0.53, and 1.18 × 106 ± 9.07 × 104 cells/ml, respectively. A significant difference (P < 0.05) between the mean values of two composition parameters, i.e., percent of fat and MSCC/ml in ELISA-positive and -negative samples, for Fasciola gigantica was observed. The antigen used for the diagnosis of F. gigantica was excretory/secretory (E/S) antigen. The dilutions of (E/S) concentrations after checkerboard titration for indirect ELISA were 20 μg/ml protein and for dot-ELISA, 300 ng/μl. Sera dilution was 1:100 in the two tests, and milk dilution was 1:50 for indirect ELISA, and 1:25 for dot-ELISA. The two tests were performed using known F. gigantica positive and negative goat sera and known rat hyper immunized negative and positive sera against E/S antigen of F. gigantica as well as known sera for paramphistomes without F. gigantica infection. The cutoff values in indirect ELISA were 0.45 for sera and 0.35 for milk.

Conclusion

The application of different serological technique in goat farms reveals a good test in rapid diagnosis of fascioliasis especially the uses of dot ELISA when using the milk instead of the serum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35(11–12):1255–1278. https://doi.org/10.1016/j.ijpara.2005.07.010

    CAS  Article  PubMed  Google Scholar 

  2. Charlier J, Duchateau L, Claerebout E, Williams D, Vercruysse J (2007) Associations between anti-Fasciola hepatica antibody levels in bulk-tank milk samples and production parameters in dairy herds. Prev Vet Med 78:57–66. https://doi.org/10.1016/j.prevetmed.2006.09.010

    Article  PubMed  Google Scholar 

  3. Villa-Mancera A, Reynoso-Palomar A (2019) Bulk tank milk ELISA to detect IgG1 prevalence and clustering to determine spatial distribution and risk factors of Fasciola hepatica-infected herds in Mexico. J Helminthol 93(6):704–710. https://doi.org/10.1017/S0022149X18000792

    CAS  Article  PubMed  Google Scholar 

  4. Sarkari B, Parhoode M, Abdolahi Khabisi S, Shafiei R, Mohammadi-ghalehbin B (2017) Genetic diversity of Fasciola spp isolates from northern part of Iran: comparison with southwestern isolates. J Parasit Dis 41(3):768–772. https://doi.org/10.1007/s12639-017-0886-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Anderson N, Luong TT, Vo NG, Bui KL, Smooker PM, Spithil TW (1999) The sensitivity and specificity of two methods for detecting Fasciola infections in cattle. Vet Parasitol 83:15–24. https://doi.org/10.1016/S0304-4017(99)00026-6

    CAS  Article  PubMed  Google Scholar 

  6. Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez-Moreno A, Martinez-Valladares M, Rinaldi PJ (2018) Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound Emerg Dis 65(Suppl1):199–216. https://doi.org/10.1111/tbed.12682

    Article  PubMed  Google Scholar 

  7. Oneill S, Brady M, Callanan MT, Mulcahy JJ, Joyce G, Mills Dalton JP (2000) Fasciola hepaticainfection downregulates Th1 responses in mice. Parasite Immunol 22:147–155. https://doi.org/10.1046/j.1365-3024.2000.00290.x

    CAS  Article  Google Scholar 

  8. Graham-Brown J, Williams DJL, Skuce P, Zadoks RN, Dawes S, Swales H, Van Dijk J (2019) Composite Fasciola hepatica faecal egg sedimentation test for cattle. Vet Rec 184(19):589–596. https://doi.org/10.1136/vr.105128

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rahman AK, Islam SK, Talukder MdH, Hassan MdK, Dhand NK, Ward MP (2017) Fascioliasis risk factors and space-time clusters in domestic ruminants in Bangladesh Parasit and Vectors. Reg Studies Rep 10:228

    Google Scholar 

  10. Yavuz A, Inci A, Yildirim A, Ica A, Duzlu O (2007) Distribution of Fasciola hepatica in cattle. Erciyes Univ J Health Sci 16:96–102

    Google Scholar 

  11. Calvani NE, George SD, Windsor PA, Bush RD, Šlapeta J (2018) Comparison of early detection of Fasciola hepatica in experimentally infected Merino sheep by real-time PCR, coproantigen ELISA and sedimentation. Vet Parasitol 251:85–89. https://doi.org/10.1016/j.vetpar.2018.01.004

    CAS  Article  PubMed  Google Scholar 

  12. Sanchez J, Dohoo I (2002) A bulk tank milk survey of Ostertagia ostertagi antibodies in dairy herds in Prince Edward Island and their relationship with herd management factors and milk yield. Can Vet J 43: 454–459. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC339297/

  13. Blood DC, Radostits OM (2000) Veterinary Medicine, 9th edn. Balliere Tindall, London, UK, pp 1378–1382

    Google Scholar 

  14. Meharenet B (2018) Prevalence of bovine fasciolosis and economic significance in and around Chora Wereda Western Ethiopia. Acta Parasitol Globalis 9(3):107–111. https://doi.org/10.5829/idosi.apg.2018.107.111

    Article  Google Scholar 

  15. Agatsuma T, Arakawa Y, Iwagami M, Honzako Y, Cahyaningsih U, Kang SY, Hong SJ (2000) Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitol Int 49:231–238. https://doi.org/10.1016/S1383-5769(00)00051-9

    CAS  Article  PubMed  Google Scholar 

  16. Itagaki T, Kikawa M, Sakaguchi K, Shimo J, Terasaki K, Shibahara T, Fukuda K (2005) Genetic characterization of parthenogenetic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitol 131:679–685

    CAS  Article  Google Scholar 

  17. Le TH, De NV, Agatsuma T, Blair D, Vercruysse J, Dorny P, Nguyen TG, Mc Manus DP (2007) Case report: Molecular confirmation that Fasciola gigantica can undertake aberrant migration in human hosts. J Clin Microbiol 45:648–650. https://doi.org/10.1128/JCM.01151-06

    CAS  Article  PubMed  Google Scholar 

  18. Le TH, De NV, Agatsuma Nguyen TGT, Nguyen QD, McManus DP, Blair D (2008) Human fascioliasis and the presence of hybrid / introgressed forms of Fasciola in Vietnam. Int J Parasitol 38:725–730. https://doi.org/10.1016/j.ijpara.2007.10.003

    Article  PubMed  Google Scholar 

  19. Nyindo M, Lukambagire A (2015) Fascioliasis: an ongoing zoonotic trematode infection. Biomed Res Int 2015:1–8. https://doi.org/10.1155/2015/786195

    Article  Google Scholar 

  20. Rim HJ, Farag HF, Sornmani S, Cross JH (1994) Food-borne trematodes: ignored or emerging? Parasitol Today 10:207–209

    Article  Google Scholar 

  21. Hopkins DR (1992) Homing in on helminthes. Am J Trop Med Hyg 46:626–634

    CAS  Article  Google Scholar 

  22. Esteban JG, Bargues MD, Mas-Comas S (1998) Geographical distribution, diagnosis and treatment of human fascioliasis: a review. Res Rev Parasitol 58:13–42

    Google Scholar 

  23. Carrique-Mas JJ, Bryant JE (2013) A review of foodborne bacterial and parasitic zoonoses in Vietnam. EcoHealth 10(4):465–489

    Article  Google Scholar 

  24. Bless PJ, Schar F, Khieu V et al (2015) High prevalence of large trematode eggs in school children in Cambodia. Acta Trop 141(1):295–302. https://doi.org/10.1016/j.actatropica.2014.09.007

    Article  PubMed  Google Scholar 

  25. Charlier J, Claerebout E, Duchateau L, Vercruysse J (2005) A survey to determine relationships between bulk tank milk antibodies against Ostertagia ostertagi and milk production parameters. Vet Parasitol 129:67–75. https://doi.org/10.1016/j.vetpar.2004.11.024

    Article  PubMed  Google Scholar 

  26. Greiner M, Gardner IA (2000) Epidemiologic issues in the validation of veterinary diagnostic tests. Prev Vet Med 45:3–22. https://doi.org/10.1016/S0167-5877(00)00114-8

    CAS  Article  PubMed  Google Scholar 

  27. Rehman TU (2013) ELISA based surveillance of bovine Fascioliasis in district Sargodha. PhD. Thesis, Department of Parasitology, Faculty of Veterinary Sciences. University of Agriculture, Faisalabad

    Google Scholar 

  28. Attia MM, Saad MF, Abdel-Salam AB (2017) Milk as a substitute for serum in diagnosis of toxoplasmosis in goats. J Egypt Soc Parasitol 47(1):227–234. https://doi.org/10.12816/jesp.2017.78039

    Article  PubMed  Google Scholar 

  29. ISO International Standard Organization (2017) ISO standard ISO 6887–1:2017. Milk and milk products, general guidelines for preparation of test samples, initial suspension and decimal dilution for microbiological examination. ISO/TC 34/SC 9 – Microbiology 2:26. https://www.iso.org/standard/63335.html

  30. Nesma HY, Nagah MH, Halawa MA, Saad MF (2020) Influence of some hygienic measures on the prevalence of subclinical mastitis in a dairy farm. Int J Dairy Sci 15:38–47. https://doi.org/10.3923/ijds.2020.38.47

    CAS  Article  Google Scholar 

  31. ISO International Standard Organization (2013) ISO standard DIS 4833–1: 2013(E). Microbiology of food and feeding stuff/Horizontal method for the enumeration of microorganisms/colony count technique at 30 oC. ISO/TC34/SC9 - Microbiology 1:9. https://www.iso.org/standard/53728.html

  32. Ferronatto JA, Ferronatto TC, Schneider M, Pessoa LF, Blagitz MG, Heinemann MB, Della Libera AM, Souza FN (2018) Diagnosing mastitis in early lactation: use of Somaticell®, California mastitis test and somatic cell count. Ital J Anim Sci 17(3):723–729. https://doi.org/10.1080/1828051X.2018.1426394

    CAS  Article  Google Scholar 

  33. Youssif NH, Hafiz NM, Halawa MA, Aziz HM, Saad MF (2020) Impact of subclinical mastitis on milk quality in different seasons. Int J Vet Sci 9:313–316. https://doi.org/10.37422/IJVS/20.020

    Article  Google Scholar 

  34. Soulsby EJL (1986) Helminths, arthropods and protozoa of domesticated animals, 6th edn. Bailliere and Tindall, London

    Google Scholar 

  35. Aravindhan G, Soundararajan C, Nagarajan K, Gomathinayagam S (2018) Preparation and characterization of excretory and secretory antigen of Cotylophoron cotylophorum and Gastrothylax crumenifer. J Parasit Dis 42(1):87–90. https://doi.org/10.1007/s12639-017-0970-y

    CAS  Article  PubMed  Google Scholar 

  36. Martínez-Sernández V, Orbegozo-Medina RA, González-Warleta M, Mezo M, Ubeira FM (2016) Rapid Enhanced MM3-COPRO ELISA for detection of Fasciola Coproantigens. PLoS Negl Trop Dis 10(7):e0004872. https://doi.org/10.1371/journal.pntd.0004872

    Article  PubMed  PubMed Central  Google Scholar 

  37. Attia MM, Ismael E, Saleh NMK (2019) A sensitive serodiagnostic tool for the detection of active infection of zoonotic visceral and nasopharyngeal linguatulosis. Vete World 12(6):883–889. https://doi.org/10.14202/vetworld.2019.883-889

    CAS  Article  Google Scholar 

  38. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  39. Attia MM, Soliman SM, Saleh NMK (2019) Advanced and rapid serodiagnosis of oestrosis (Oestrus ovis; Diptera: Oestridae) in sheep using indirect and dot-ELISA. J Biol Sci 12(3):275–281

    CAS  Google Scholar 

  40. Kumar N, Ghosh S, Gupta SC (2008) Early detection of Fasciola gigantica infection in buffaloes by enzyme linked and dot enzyme linked immunosorbent. Parasitol Res 103:141–150

    Article  Google Scholar 

  41. Ramajo V, Oleaga A, Casanueva P, Hillyer GV, Muro A (2001) Vaccination of sheep against Fasciola hepatica with homologous fatty acid binding proteins. Vet Parasitol 97:35–46. https://doi.org/10.1016/S0304-4017(01)00388-0

    CAS  Article  PubMed  Google Scholar 

  42. Dixit AK, Yadav SC, Sharma RL (2002) 28 kDa Fasciola gigantica cysteine proteinase in the diagnosis of prepatent ovine fasciolosis. Vet Parasitol 109:233–247

    CAS  Article  Google Scholar 

  43. Khan MK, Sajid MS, Khan MN, Iqbal Z, Iqbal MU (2009) Bovine fascioliasis: Prevalence, effects of treatment on productivity and cost benefit analysis in five districts of Punjab. Pakistan Res Vet Sci 87:70–75. https://doi.org/10.1016/j.rvsc.2008.12.013

    Article  PubMed  Google Scholar 

  44. Farnaud SJ, Kosti O, Getting SJ, Renshaw D (2010) Saliva: physiology and diagnostic potential in health and disease. Sci World J 10:434–456. https://doi.org/10.1100/tsw.2010.38

    CAS  Article  Google Scholar 

  45. Khan MN, Sajid MS, Khan MK, Iqbal Z, Hussain A (2010) Gastrointestinal helminthiasis: prevalence and associated determinants in domestic ruminants of district Toba Tek Singh, Punjab. Pakistan Parasitol Res 107:787–794

    Article  Google Scholar 

  46. Abdulhakim Y, Addis M (2012) An abattoir study on the prevalence of fasciolosis in cattle, sheep and goats in Debre Zeit Town, Ethiopia. Glob Vet 8:308–314. https://www.idosi.org/gv/GV8(3)12/17.pdf

  47. Mir MR, Chishti MZ, Rashid M, Dar SA, Katoch R, Mehraj M, Dar MA, Rasool R (2013) The epidemiology of caprine fascioliasis in Jammu (J&K) – India. Int J Food Agric Vet Sci 3:233–237

    Google Scholar 

  48. Jabbar A, Iqbal Z, Kerboeuf D, Muhammad G, Khan MN, Affaq M (2006) Anthelmintic resistance: the state of play revisited. Life Sci 79:2413–2431

    CAS  Article  Google Scholar 

  49. Alves DP, Carneiro MB, Martins IVF, Bernardo CC, Donatele DM, Pereira OS, Almeida BR, Avelar BR, Leão AGC (2011) Distribution and factors associated with Fasciola hepatica infection in cattle in the south of Espirito Santo State, Brazil. J Venom Anim Toxins Tropic Dis 17:271–276. https://doi.org/10.1590/S1678-91992011000300006

    Article  Google Scholar 

  50. Relf V, Good B, Hanrahan J, Mccarthy E, Forbes A, Dewaal TH (2011) Temporal studies on Fasciola hepatica in Galba truncatula in the west of Ireland. Vet Parasitol 175:287–292. https://doi.org/10.1016/j.vetpar.2010.10.010

    CAS  Article  PubMed  Google Scholar 

  51. Bergquist R, Johansen MV, Utzinger J (2009) Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 25:151–156. https://doi.org/10.1016/j.pt.2009.01.004

    Article  PubMed  Google Scholar 

  52. Keiser J, Utzinger J (2009) Food–borne trematodiases. Clin Microbiol Rev 22:466–483

    Article  Google Scholar 

  53. Salimi-Bejestani MR, Mcgary JW, Felstead SM, Ortiz P, Akca A, Williams DJL (2005) Development of an antibody-detection ELISA for Fasciola hepatica and its evaluation against a commercially available test. Res Vet Sci 78:177–181. https://doi.org/10.1016/j.rvsc.2004.08.005

    CAS  Article  PubMed  Google Scholar 

  54. Salimi-Bejestani MR, Daniel RG, Felstead SM, Cripps PJ, Mahmoody H, Williams DJ (2005) Prevalence of Fasciola hepatica in dairy herds in England and Wales measured with an ELISA applied to bulk-tank milk. Vet Rec 156:729–731. https://doi.org/10.1136/vr.156.23.729

    CAS  Article  PubMed  Google Scholar 

  55. Ghosh S, Rawat P, Velusamy R, Joseph D, Gupta SC, Singh BP (2005) 27 KDa Fasciola gigantica glycoprotein for the diagnosis of prepatent fasciolasis in cattle. Vet Res Commun 29:123–135

    CAS  Article  Google Scholar 

  56. El Ridi R, Salah M, Wagih A, William H, Tallima H, El Shafie MH, Abdel Khalek T, El Amir A, Abo Ammou FF, Motawi H (2007) Fasciola gigantica excretory–secretory products for immunodiagnosis and prevention of sheep fasciolosis. Vet Parasitol 149:219–228. https://doi.org/10.1016/j.vetpar.2007.08.024

    Article  PubMed  Google Scholar 

  57. Chanie M, Begashaw S (2012) Assessment of the economic impact and prevalence of ovine fasciolosis in MenzLaloMidir District, Northeast Ethiopia. Vet World 5:261–264. https://doi.org/10.5455/vetworld.2012.261-264

    Article  Google Scholar 

  58. Keyyu JD, Monrad J, Kyvsgaard NC, Kassuku AA (2005) Epidemiology of Fasciola gigantica and Amphistomes in cattle on traditional, small-scale dairy and large-scale dairy farms in the Southern Highlands of Tanzania. Trop Anim Health Prod 37:303–314

    CAS  Article  Google Scholar 

  59. Anjum R, Khan MN, Sajid MS, Javed MT (2014) Frequency distribution of fasciolosis in small ruminants population at district Sargodha. Global Veterinaria 12:26–32. https://doi.org/10.5829/idosi.gv.2014.12.01.81152

    Article  Google Scholar 

  60. McPherson WB, Gogolewski RP, Slacek B, Familton AS, Gross SJ, Maciel AE, Ryan WG (2001) Effect of a peri-parturient eprinomectin treatment of dairy cows on milk production. New Zeal Vet J 49:106–110

    CAS  Article  Google Scholar 

  61. Nødvedt A, Dohoo I, Sanchez J, Conboy G, DesCoˆteaux L, Keefe G (2002) Increase in milk yield following eprinomectin treatment at calving in pastured dairy cattle. Vet Parasitol 105:191–206

    Article  Google Scholar 

  62. Mezo M, Gonzalez-Warleta M, Antonio Castro-Hermida J, Muino L, Ubeira FM (2011) Association between anti-F. hepatica antibody levels in milk and production losses in dairy cows. Vet Parasitol 180:237–242. https://doi.org/10.1016/j.vetpar.2011.03.009

    Article  PubMed  Google Scholar 

  63. Charlier J, Hostens M, Jacobs J, Van Ranst B, Duchateau L, Vercruysse J (2012) Integrating fasciolosis control in the dry cow management: the effect of closantel treatment on milk production. PLoS ONE 7:e43216. https://doi.org/10.1371/journal.pone.0043216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Howell A, Baylis M, Smith R, Pinchbeck G, Williams D (2015) Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds. Prev Vet Med 121:41–48. https://doi.org/10.1016/j.prevetmed.2015.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  65. Michalski M (2002) The influence of Fasciola hepatica invasion on the assorted milk quality parameters in cows. Wiad Parazytol 48(2):225–229

    PubMed  Google Scholar 

  66. May K, Bohlsen E, Konig S (2020) Christina Strube Fasciola hepatica seroprevalence in Northern German dairy herds and associations with milk production parameters and milk ketone bodies. Vet Parasitol 277:1–8

    Article  Google Scholar 

  67. May K, Brugemann K, Konig S, Strube C (2019) Patent infections with Fasciola hepatica and paramphistomes (Calicophoron daubneyi) in dairy cows and association of fasciolosis with individual milk production and fertility parameters. Vet Parasitol 267:32–41

    CAS  Article  Google Scholar 

  68. Kostenberger K, Tichy A, Bauer K, Pless P, Wittek T (2017) Associations between fasciolosis and milk production, and the impact of anthelmintic treatment in dairy herds. Parasitol Res 116:1981–1987

    Article  Google Scholar 

  69. Reist M, Erdin D, von Euw D, Tschuemperlin K, Leuenberger H, Chilliard Y, Hammon HM, Morel C, Philipona C, Zbinden Y, Kuenzi N, Blum JW (2002) Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows. J Dairy Sci 85:3314–3327. https://doi.org/10.3168/jds.S0022-0302(02)74420-2

    CAS  Article  PubMed  Google Scholar 

  70. Kaplan RM (2001) Fasciola hepatica: a review of the economic impact in cattle and considerations for control. Vet Ther 2:40–50

    CAS  PubMed  Google Scholar 

  71. Phiri IK, Phiri AM, Harrison IJS (2007) The serum glucose and s-hydroxybutyrate levels in sheep with experimental Fasciola hepatica and Fasciola gigantica infection. Vet Parasitol 143:287–293

    CAS  Article  Google Scholar 

  72. Baldissera MD, Bottari NB, Mendes RE, Schwertz CI, Lucca NJ, Dalenogare D, Bochi GV, Moresco RN et al (2015) Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: influences of these enzymes on inflammatory response and pathological findings. Pathol Res Pract 211:871–876. https://doi.org/10.1016/j.prp.2015.09.006

    CAS  Article  PubMed  Google Scholar 

  73. Molina-Hernandez V, Mulcahy G, Perez J, Martinez-Moreno A, Donnelly S, O’Neill SM, Dalton JP, Cwiklinski K (2015) Fasciola hepatica vaccine: we may not be there yet but we’re on the right road. Vet Parasitol 208:101–111. https://doi.org/10.1016/j.vetpar.2015.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  74. Claridge J, Diggle P, McCann CM, Mulcahy G, Flynn R, McNair J, Strain S, Welsh M, Baylis M, Williams DJL (2012) Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle. Nat Commun 3:853

    Article  Google Scholar 

  75. Hafiz NM, Saad MF, Hanafy MH, Abdel-Latif EF (2016) Detection of Mycobacterium avium subsp. paratuberculosis in raw buffaloe’s milk. Internat J Chem Tech Res 9:123–128

    CAS  Google Scholar 

  76. Lucena AN, Cuartero LG, Mulcahy G, Zintl A (2017) The immunoregulatory effects of co-infection with Fasciola hepatica: from bovine tuberculosis to Johne’s disease. Vet J 222:9–16. https://doi.org/10.1016/j.tvjl.2017.02.007

    Article  Google Scholar 

  77. Ibrahim AS, Saad MF, Hafiz NM (2020) Toxic elements in dried milk and evaluation of their dietary intake in infant formula. Int J Vet Sci. https://doi.org/10.37422/IJVS/20.070

    Article  Google Scholar 

  78. Oviedo-Boyso J, Valdez-Alarcon JJ, Cajero-Juarez M, Ochoa-Zarzosa A, Lopez-Meza JE, Bravo-Patino A, Baizabal-Aguirre VM (2007) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54:399–409. https://doi.org/10.1016/j.jinf.2006.06.010

    Article  PubMed  Google Scholar 

Download references

Funding

All authors declare that they are no funding supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors sharing in the aim of works; MFS: collect the milk samples and applying the analysis of milk; MMA identify the parasites; applying the laboratory analysis; all authors sharing in writing this manuscript and revise it.

Corresponding author

Correspondence to Marwa M. Attia.

Ethics declarations

Conflict of Interest

All Authors declare that, there is no competing of interest.

Human and Animal Rights

All authors declare that the experiments on animals were conducted in accordance with local Ethical Committee laws and regulations as regards care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saad, M.F., Attia, M.M. Milk As a New Diagnostic Tool for Rapid Detection of Fascioliasis in Dairy Goats Using Excretory/Secretory Antigen. Acta Parasit. 66, 336–345 (2021). https://doi.org/10.1007/s11686-020-00286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00286-z

Keywords

  • Fascioliasis
  • ELISA
  • Goat milk
  • Fasciola gigantica
  • Excretory–secretory antigen