Skip to main content

Haemonchus contortus Susceptibility and Resistance to Anthelmintics in Naturally Infected Egyptian Sheep

Abstract

Purpose

Susceptibility and resistance of Haemonchus contortus to anthelmintic drugs, including ivermectin, levamisole, and albendazole in naturally infected sheep were investigated.

Methods

Three sets of assays were conducted to detect drug efficacy. Firstly, in vivo estimation of drug resistance to H. contortus was explored in 80 sheep naturally infected with H. contortus. Sheep were divided into four equal groups (20 sheep for each group): the first group was treated with albendazole (5.00 mg/kg BW), the second with levamisole (7.50 mg/kg BW), the third with ivermectin (0.20 mg/kg BW), and the fourth group served as the untreated control. Fecal egg reduction test (FERT) was done at days 7 and 14 after treatment. Secondly, for in vitro egg hatching assay (EHA), H. contortus eggs from naturally infected sheep were collected and treated with 0.0002, 0.002, 0.02, 0.2, and 2.0 µg/mL albendazole. Thirdly, molecular detection of the albendazole resistance gene in adult male H. contortus worms and larvae from infected sheep was carried out using allele-specific PCR.

Results

The FECRT results showed that the drug efficacy was 86.84% for albendazole and 100% for both levamisole and ivermectin. The result of EHA showed that eggs did not hatch at 2.0 µg/mL albendazole concentration. Molecular findings showed two forms, including H. contortus homozygous susceptible (SS) and heterozygous (RS) of “β-tubulin” gene at 200 sites, which were recorded in both single male worms and larvae.

Conclusion

H. contortus, which was susceptible to levamisole and ivermectin, had developed resistance to albendazole.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Urquhart GM, Armour J, Dunca JL, Dunn AM, Jennings FW (2000) Veterinary Parasitology, 2nd edn. Blackwell Science Ltd, London

    Google Scholar 

  2. Veale PI (2002) Resistance to macrocyclic lactones in nematodes of goats. Aust Vet J 80:303–304. https://doi.org/10.1111/j.1751-0813.2002.tb10852.x

    CAS  Article  PubMed  Google Scholar 

  3. Kahn CM, Line S (2005) The Merck veterinary manual. Merck, Whitehouse Station, N.J., pp 2111–2125

    Google Scholar 

  4. Prichard RK, Hall CA, Kelly JD, Martin ICA, Donald AD (1980) The problem of anthelmintic resistance in nematodes. Aus Vet J 56:239–250. https://doi.org/10.1111/j.1751-0813.1980.tb15983.x

    CAS  Article  Google Scholar 

  5. Overend DG, Phillips ML, Poulton AL, Foster CE (1994) Anthelminthic resistance in Australian sheep nematode populations. Aus Vet J 7:117–121. https://doi.org/10.1111/j.1751-0813.1994.tb03352.x

    Article  Google Scholar 

  6. Kaminsky R, Bapst B, Stein PA, Strehlau GA, Allan BA, Hosking BC, Rolfe PF, Sager H (2011) Differences in efficacy of monepantel, derquantel and abamectin against multi-resistant nematodes of sheep. Parasitol Res 109(1):19–23. https://doi.org/10.1007/s00436-010-2216-0

    Article  PubMed  Google Scholar 

  7. Van den Brom R, Moll L, Kappert C, Vellema P (2015) Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol 209(3–4):278–280. https://doi.org/10.1016/j.vetpar.2015.02.026

    CAS  Article  PubMed  Google Scholar 

  8. Cezar AS, Toscan G, Camillo G, Sangioni LA, Ribas HO, Vogel FSF (2010) Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Vet Parasitol 173(1–2):157–160. https://doi.org/10.1016/j.vetpar.2010.06.013

    Article  PubMed  Google Scholar 

  9. Zajacc AM, Gipson TA (2000) Multiple anthelmintic resistance in a goat herd. Vet Parasitol 87:163–172. https://doi.org/10.1016/s0304-4017(99)00174-0

    Article  Google Scholar 

  10. Garretson PD, Hammond EE, Craig TM, Holman PJ (2009) Anthelminthic resistant Haemonchus contortus in a giraffe (Giraffa camelopardalis) in Florida. J Zoo Wildl Med 40(1):131–139. https://doi.org/10.1638/2007-0094.1

    Article  PubMed  Google Scholar 

  11. Tsotetsi AM, Njiro S, Katsande TC, Moyo G, Baloyi F, Mpofu J (2013) Prevalence of gastrointestinal helminths and anthelmintic resistance on small-scale farms in Gauteng Province. South Africa Trop Anim Health Prod 45(3):751–761. https://doi.org/10.1007/s11250-012-0285-z

    Article  PubMed  Google Scholar 

  12. Hong C, Hunt KR, Coles GC (1996) Occurrence of anthelmintic resistant nematodes on sheep farms in England and goat farms in England and Wales. Veterinary Record 139:83–86. https://doi.org/10.1136/vr.139.4.83

    CAS  Article  Google Scholar 

  13. Borgsteede FH, Pekelder JJ, Dercksen DP (1996) Anthelmintic resistant nematodes in goats in The Netherlands. Vet Parasitol 65:83–87. https://doi.org/10.1016/0304-4017(95)00931-0

    CAS  Article  PubMed  Google Scholar 

  14. Requejo-Fernández JA, Martínez A, Meana A, Rojo-Vázquez FA, Osoro K, Ortega-Mora LM (1997) Anthelmintic resistance in nematode parasites from goats in Spain. Vet Parasitol 73:83–88. https://doi.org/10.1016/s0304-4017(97)00043-5

    Article  PubMed  Google Scholar 

  15. Bauer C (2001) Multispecific resistance of trichostrongyles to benzimidazoles in a goat herd in Germany. Deutsche Tierarztliche Wochenschrift 108:49–50.

    CAS  PubMed  Google Scholar 

  16. Schnyder M, Torgerson PR, Schönmann M, Kohler L, Hertzberg H (2005) Multiple anthelmintic resistance in Haemonchus contortus isolated from South African Boer goats in Switzerland. Vet Parasitol 128:285–290. https://doi.org/10.1016/j.vetpar.2004.12.010

    CAS  Article  PubMed  Google Scholar 

  17. Cringoli G, Veneziano V, Rinaldi L, Sauvé C, Rubino R, Fedele V, Cabaret J (2007) Resistance of trichostrongylus to benzimidazoles in Italy: a first report in a goat farm with multiple and repeated introductions. Parasitol Res 101:577–581. https://doi.org/10.1007/s00436-007-0518-7

    CAS  Article  PubMed  Google Scholar 

  18. Shen DD, Peng ZW, Hu M, Zhang ZZ, Hou ZJ, Liu ZS (2019) A detection of benzimidazole resistance-associated SNPs in the isotype-1 β-tubulin gene in Haemonchus contortus from wild blue sheep (Pseudois nayaur) sympatric with sheep in Helan Mountains, China. BMC Vet Res. 15(1):89. https://doi.org/10.1186/s12917-019-1838-4(Published 2019 Mar 12)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chaudhry U, Redman EM, Raman M, Gilleard JS (2015) Genetic evidence for the spread of a benzimidazole resistance mutation across southern India from a single origin in the parasitic nematode Haemonchus contortus. Int J Parasitol 45(11):721–728. https://doi.org/10.1016/j.ijpara.2015.04.007

    CAS  Article  PubMed  Google Scholar 

  20. Ali Q, Rashid I, Shabbir MZ et al (2018) Population genetics of benzimidazole-resistant Haemonchus contortus and Haemonchus placei from buffalo and cattle: implications for the emergence and spread of resistance mutations. Parasitol Res 117(11):3575–3583. https://doi.org/10.1007/s00436-018-6055-8

    Article  PubMed  Google Scholar 

  21. Shokrani HR, Shayan P, Eslami A, Nabavi R (2012) Benzimidazole-resistance in Haemonchus contortus: new PCR-RFLP method for the detection of point mutation at codon 167 of isotype 1 Β-tubulin gene. Iranian J Parasitol 7(4):41–48

    CAS  Google Scholar 

  22. Lacey E (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 18:885–936. https://doi.org/10.1016/0020-7519(88)90175-0

    CAS  Article  PubMed  Google Scholar 

  23. Prichard R (1994) Anthelmintic resistance. Vet Parasitol 54:259–268. https://doi.org/10.1016/0304-4017(94)90094-9

    CAS  Article  PubMed  Google Scholar 

  24. Rang HP (2003) Pharmacology Edinburgh: Churchill Livingstone resistant nematodes. Res Vet Sci 45:50–53

    Google Scholar 

  25. Stuchlíková LR, PetraMatouškováaIvanVokřálStuchlíková LR, Sečkařová PJBSA, Dimunová D, ThuyNguyena L, MariánVárady LenkaSkálov (2018) Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites. Inter J Parasitol Drugs Resist 8(1):50–58. https://doi.org/10.1016/j.ijpddr.2018.01.005

    Article  Google Scholar 

  26. Lacey E, Prichard RK (1986) Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Mol Biochem Parasitol 19:171–181. https://doi.org/10.1016/0166-6851(86)90122-2

    CAS  Article  PubMed  Google Scholar 

  27. Coles GC, Tritschler JP, Giordano DJ, Laste NJ, Schmidt AL (1988) Larval development test for detection of anthelmintic resistant nematodes. Res Vet Sci 45(1):50–53

    CAS  Article  Google Scholar 

  28. Silvestre A, Humbert JF (2002) Diversity of benzimidazole-resistance alleles in populations of small ruminant parasites. Int J Parasitol 32(7):921–928. https://doi.org/10.1016/s0020-7519(02)00032-2

    CAS  Article  PubMed  Google Scholar 

  29. Arafa WM, Holman PJ, Craig TM (2017) Genotypic and phenotypic evaluation for benzimidazole resistance or susceptibility in Haemonchus contortus isolates. Parasitol Res 116(2):797–807. https://doi.org/10.1007/s00436-016-5357-y

    Article  PubMed  Google Scholar 

  30. Soulsby EJL (1982) Helminths, arthropods, and protozoa of domesticated animals. Lea and Febiger, Philadelphia

    Google Scholar 

  31. Eckert J (1960) Die diagnose de Magen-Darmstrongyliden beffales des schafes durch differenzierung der ferilebenden dritten larven (The diagnosis of gastrointestinal strongylosis in sheep by differentiation of the free-living third-stage larvae). Zentrablatt Fur Veterinar Medizin 94:612–629

    Google Scholar 

  32. Van wyk JA, Mayhew E (2013) Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: a practical lab guide’. Onderstepoort J Vet Res 80(1):539–514. https://doi.org/10.4102/ojvr.v80i1.539

    Article  Google Scholar 

  33. Wood IB, Amaral NK, Bairden K, Duncan JL, Kassai T, Malone JB Jr, Pankavich JA, Reinecke RK, Slocombe O, Taylor SM, Vercruysse J (1995) World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol 58:181–213. https://doi.org/10.1016/0304-4017(95)00806-2

    CAS  Article  PubMed  Google Scholar 

  34. Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre G, Taylor MA, Vercruysse J (2006) The detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 136:167–185. https://doi.org/10.1016/j.vetpar.2005.11.019

    CAS  Article  PubMed  Google Scholar 

  35. Varady M, Konigova A, Corba J (2004) A field study to evaluate the efficacy of fenbendazole on 9 stud farms. Vet Med Czech 49:42–46

    CAS  Article  Google Scholar 

  36. Timothy G, Geary Barry C, Hosking Philip J, Samson-Himmelstjerna Skuce G, Maeder S, Holdsworth P, Pomroy W, Vercruysse J (2012) World association for the advancement of veterinary parasitology (WAAVP) anthelmintic combination products targeting nematode infections of ruminants and horses. Vet Parasitol 190:306–316. https://doi.org/10.1016/j.vetpar.2012.09.004

    Article  Google Scholar 

  37. Ueno H, Gonçalves PC (1998) Manual para diagnóstico das helmintosesem ruminantes, 4th edn. JIICA, Tokyo, p 143

    Google Scholar 

  38. Niciura SCM, Veríssimo CJ, Gromboni JGG, Rocha MIP, de Mello SS, Barbosa CMP, Chiebao DP, Cardoso D, Silva GS, Otsuk IP, Pereira JR, Ambrosio LA, Nardon RF, Ueno TEH, Molento MB (2012) F200Y polymorphism in the β-tubulin gene in field isolates of Haemonchus contortus and risk factors of sheep flock management practices related to anthelmintic resistance. Vet Parasitol 190(3–4):608–612. https://doi.org/10.1016/j.vetpar.2012.07.016

    CAS  Article  PubMed  Google Scholar 

  39. dos Santos JM, Monteiro JP, Ribeiro WL, Macedo IT, Camurca-Vasconcelos AL, Vieira LS, Bevilaqua CM (2014) Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in northeastern Brazil. Vet Parasitol 199(3–4):160–164. https://doi.org/10.1016/j.vetpar.2013.11.006

    CAS  Article  PubMed  Google Scholar 

  40. Kumsa B, Wossene A (2006) Efficacy of Albendazole and Tetramisole Anthelmintics Against Haemonchus contortus in Experimentally Infected Lamb. Intern J Appl Res Vet Med 4:2

    Google Scholar 

  41. Teref G, FAji U, Tolossa YH (2013) Field investigation of anthelmintic efficacy and risk factors for anthelmintic drug resistance in sheep at Bedelle District of Oromia Region. Ethiopia. Ethiop Vet J 17(2):37–49. https://doi.org/10.4314/evj.v17i2.3

    Article  Google Scholar 

  42. Adediran OA, Uwalaka EC (2015) Effectiveness evaluation of Levamisole, Albendazole, Ivermectin, and Vernonia amygdalina in West African Dwarf Goats. J Parasitol Res 706824:5. https://doi.org/10.1155/2015/706824

    CAS  Article  Google Scholar 

  43. Nasreen S, Jeelani G, Sheikh FD (2007) Efficacy of different anthelmintics against gastro-intestinal nematodes of sheep in Kashmir Valley, vol 2 , issue 1. p1

  44. Mohammedsalih KM, Khalafalla A, Bashar A, Abakar A, Hessain A, Juma FR, Coles G, Krücken J, von Samson-Himmelstjerna G (2019) (2019) Epidemiology of strongyle nematode infections and first report of benzimidazole resistance in Haemonchus contortus in goats in South Darfur State, Sudan. BMC Vet Res 15(1):184. https://doi.org/10.1186/s12917-019-1937-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Oxberry ME, Gear TG, Prichard RK (2001) Assessment of benzimidazole binding to individual recombinant tubulin isotypes from Haemonchus contortus. Parasitology 122:683–687. https://doi.org/10.1017/s0031182001007788

    CAS  Article  PubMed  Google Scholar 

  46. Singh D, Swarnkar CP (2008) Role of refugia in management of anthelmintic resistance in nematodes of small ruminants - a review. Indian J Small Rum 14(2):141–180

    Google Scholar 

  47. Kohler P (2001) The biochemical basis of anthelmintic action and resistance. Int J Parasitol 31(4):336–345. https://doi.org/10.1016/s0020-7519(01)00131-x

    CAS  Article  PubMed  Google Scholar 

  48. Leathwick DM, Pomroy W, Heath ACG (2001) Anthelmintic resistance in New Zealand. NewZealand Veter J 49:227–235. https://doi.org/10.1080/00480169.2001.36237

    CAS  Article  Google Scholar 

  49. Dobson RJ, Le Jambre LF, Gill JH (1996) Management of anthelmintic resistance: inheritance of resistance and selection with persistent drugs. Int J Parasitol 26:993–1000. https://doi.org/10.1016/s0020-7519(96)80078-6

    CAS  Article  PubMed  Google Scholar 

  50. Roos MN (1997) The role of drugs in the control of parasitic nematode infections: must we do without? Parasitology 14:137–144

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the efforts and facilities for this work that were available from Sides station for animal production.

Funding

None was provided funding information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawky M. Aboelhadid.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

The animal management and rearing during this experiment was subject to the ethical standards approved by Beni-Suef University ethical committee (BSU, 0112/2018). The experiment was conducted at Sides station for animal production (national station) and the official authority of the station permitted carrying out this study in the sheep sector of the station.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aboelhadid, S.M., Arafa, W.M., El-Ashram, S. et al. Haemonchus contortus Susceptibility and Resistance to Anthelmintics in Naturally Infected Egyptian Sheep. Acta Parasit. 66, 329–335 (2021). https://doi.org/10.1007/s11686-020-00284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00284-1

Keywords

  • Haemonchus contortus
  • Sheep
  • Egg hatching assay
  • Albendazole
  • Susceptibility
  • Resistance