Skip to main content

Detection and Molecular Identification of Cryptosporidium Species Among Children with Malignancies

Abstract

Background

Cryptosporidiosis represents a major health problem worldwide particularly among children. Its diagnosis is still difficult and demands sensitive methods. In Egypt, there is little documentation of infection among children with malignancies. This work was designed to study the infection rate of Cryptosporidium among children with malignancies, compare the performance of modified Ziehl–Neelsen (MZN) stain with nested polymerase chain reaction (PCR) and identify the species subtypes of positive cases.

Methods

The study was conducted on 100 children with malignancies (leukemia, lymphoma and solid tumors), below 10 years of age, from El-Shatby hospital, Alexandria University. After obtaining the informed consent, their stool samples were collected and examined microscopically following MZN stain for the diagnosis of Cryptosporidium spp. All samples were then subjected to nested PCR. Restriction fragment length polymorphism (RFLP) targeting the Cryptosporidium oocyst wall protein (COWP) gene was applied to positive cases, using restriction enzyme RsaI for digestion of nested PCR products.

Results

Out of the 100 examined children, MZN detected higher positive cases compared to nested PCR. Six cases (6%) were diagnosed positive by MZN stain, three of which (3%) were concordantly positive by nested PCR. All positives were among children with acute lymphoblastic leukemia (ALL). Fair agreement was found between the two tests (K = 0.36). Genotyping results revealed that positive samples were of Cryptosporidium parvum (C. parvum) type II.

Conclusions

Low Cryptosporidium infection rate was detected among children with malignancies. MZN diagnosed more positive cases compared to nested PCR. C. parvum type II was the identified species among the examined children. Further optimization of PCR steps is needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ryan U, Paparini A, Monis P, Hijjawi N (2016) It's official - Cryptosporidium is a gregarine: what are the implications for the water industry? Water Res 105:305–313. https://doi.org/10.1016/j.watres.2016.09.013

    Article  PubMed  Google Scholar 

  2. Rossle NF, Latif B (2013) Cryptosporidiosis as threatening health problem: a review. Asian Pac J Trop Biomed 3(11):916–924

    Article  Google Scholar 

  3. Efstratiou A, Ongerth JE, Karanis P (2017) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2011–2016. Water Res 114:14–22. https://doi.org/10.1016/j.watres.2017.01.036

    Article  PubMed  Google Scholar 

  4. Mumtaz S, Ahmed J, Ali L (2010) Frequency of Cryptosporidium infection in children under five years of age having diarrhea in the North West of Pakistan. Afr J Biotechnol 9(8):1230–1235. https://doi.org/10.5897/AJB09.1278

    Article  Google Scholar 

  5. Fayer R (2010) Taxonomy and species determination in Cryptosporidium. Exp Parasitol 124(1):90–97. https://doi.org/10.1016/j.exppara.2009.03.005

    Article  PubMed  Google Scholar 

  6. Fall A, Thompson RC, Hobbs RP, Morgan-Ryan U (2003) Morphology is not a reliable tool for delineating species within Cryptosporidium. J Parasitol 89(2):399–402. https://doi.org/10.1645/0022-3395(2003)089[0399:MINART]2.0.CO;2

    Article  PubMed  Google Scholar 

  7. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA et al (2004) Complete genome sequence of the apicomplexan Cryptosporidium parvum. Science 304:441–445. https://doi.org/10.1126/science.1094786

    CAS  Article  PubMed  Google Scholar 

  8. Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S (2008) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74(13):3969–3976. https://doi.org/10.1128/AEM.00019-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Casemore DP, Armstrong M, Sands RL (1985) Laboratory diagnosis of cryptosporidiosis. J Clin Pathol 38:1337–1341. https://doi.org/10.1136/jcp.38.12.1337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Mahdi NK, Ali NH (2004) Cryptosporidiosis and other intestinal parasitic infections in patients with chronic diarrhea. Saudi Med J 25(9):1204–1207

    PubMed  Google Scholar 

  11. Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM et al (2015) A review of the global burden, novel diagnostics, therapeutics and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94. https://doi.org/10.1016/S1473-3099(14)70772-8

    Article  PubMed  Google Scholar 

  12. Yoshikawa H, Dogruman-AI F, Turk S, Kustimur S, Balaban N, Sultan N (2011) Evaluation of DNA extraction kits for molecular diagnosis of human Blastocystis subtypes from fecal samples. Parasitol Res 109(4):1045–1050. https://doi.org/10.1007/s00436-011-2342-3

    Article  PubMed  Google Scholar 

  13. Patel S, Pedraza-Díaz S, McLauchlin J, Outbreak CDP, South CT, Devon W, Team IM, Epidemiological F, Subgroup MS, Thames N (1997) Molecular characterization of Cryptosporidium parvum from two large suspected waterborne outbreaks. Commun Dis Public Health 1998(1):231–233

    Google Scholar 

  14. Snelling WJ, Xiao L, Ortega-Pierres G, Lowery CJ, Moore JE, Rao JR et al (2007) Cryptosporidiosis in developing countries. J Infect Dev Ctries 1(3):242–256

    Article  Google Scholar 

  15. Altman DG (1991) Practical Statistics for Medical Research. Chapman & Hall/CRC, London

    Google Scholar 

  16. Current WL, Garćıa LS (1991) Cryptosporidiosis. Clin Microbiol Rev 4(3):325–358. https://doi.org/10.1128/CMR.4.3.325

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Caccio SM, Pozio E (2006) Advances in the epidemiology, diagnosis and treatment of cryptosporidiosis. Expert Rev Anti Infect Ther 4(3):429–443. https://doi.org/10.1586/14787210.4.3.429

    Article  PubMed  Google Scholar 

  18. Abaza SM, Makhlouf LM, Shewy KA, Moamly AA (1995) Intestinal opportunistic parasites among different groups of immunocompromised hosts. J Egypt Soc Parasitol 25(3):713–727

    CAS  PubMed  Google Scholar 

  19. Makled MK, Azab ME, Abdalla HM, Sherif EA, Nasef NS (1991) Opportunistic parasitic infections in immunocompromised hosts. J Egypt Soc Parasitol 21:657–668

    PubMed  Google Scholar 

  20. World Health Statistics (2015) World Health Organization, Geneva Switzerland. https://apps.who.int/iris/bitstream/10665/170250/1/9789240694439_eng.pdf. Accessed 25 Sept 2016

  21. Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124(1):80–89. https://doi.org/10.1016/j.exppara.2009.03.018

    CAS  Article  PubMed  Google Scholar 

  22. Menon BS, Abdullah MS, Mahamud F, Singh B (1999) Intestinal parasites in Malaysian children with cancer. J Trop Pediatr 45:241–242

    CAS  Article  Google Scholar 

  23. Aksoy U, Erbay A, Akysu C, Apa H, Ozkoc S, Oztürk S (2003) Intestinal parasites in children with neoplasms. Turk J Pediatr 45(2):129–132

    PubMed  Google Scholar 

  24. Hazrati Tappeh K, Barazesh A, Hajazi S, Mostaghim M (2011) Prevalence of Cryptosporidium in children referred to oncology centre of Imam Khomeini Hospital in Urmia. Iran Pak J Med Sci 21:120–123

    Google Scholar 

  25. Berenji F, Zabolinejad N, Kianifar HR, Badeii Z, Banihashem A, Hiradfar S (2007) Cryptosporidium infection in pediatric patients with lymphohematopoietic malignancies. Iran J Pediatr 17(3):247–251

    Google Scholar 

  26. Rudrapatna JS, Kumar V, Sridhar H (1997) Intestinal parasitic infections in patients with malignancy. J Diarrhoeal Dis Res 15(2):71–74

    CAS  PubMed  Google Scholar 

  27. Morgan UM, Pallant L, Dwyer BW, Forbes DA, Rich G, Thompson RC (1998) Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J Clin Microbiol 36(4):995–998. https://doi.org/10.1128/JCM.36.4.995-998.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Tahvildar-Biderouni F, Salehi N (2014) Detection of Cryptosporidium infection by modified Ziehl–Neelsen and PCR methods in children with diarrheal samples in pediatric hospitals in Tahran. Gastroenterol Hepatol Bed Bench 7(2):125–130. https://doi.org/10.22037/ghfbb.v7i2.561

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stephen AM, Cummings JH (1980) The microbial contribution to human faecal mass. J Med Microbiol 13:45–56. https://doi.org/10.1099/00222615-13-1-45

    CAS  Article  PubMed  Google Scholar 

  30. Surl CG, Jung BD, Park BK, Kim HC (2011) Resistance of Cryptosporidium parvum oocysts following commercial bleach treatment. Korean J Vet Res 51:101–105

    Article  Google Scholar 

  31. Oikarinen S, Tauriainen S, Viskari H, Simell O, Knip M (2009) PCR inhibition in stool samples in relation to age of infants. J Clin Virol 44:211–221. https://doi.org/10.1016/j.jcv.2008.12.017

    CAS  Article  PubMed  Google Scholar 

  32. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113(5):1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x

    CAS  Article  PubMed  Google Scholar 

  33. Hawash Y (2014) DNA extraction from protozoan oocysts/cysts in feces for diagnostic PCR. Korean J Parasitol 52(3):263–271. https://doi.org/10.3347/kjp.2014.52.3.263

    Article  PubMed  PubMed Central  Google Scholar 

  34. Caccio S, Pinter E, Fantini R, Mezzaroma I, Pozio E (2002) Human infection with Cryptosporidium felis: case report and literature review. Emerg Infect Dis 8(1):85–86. https://doi.org/10.3201/eid0801.010269

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ibrahim MA, Abdel-Ghany AE, Abdel-Latef GK, Abdel-Aziz SA, Aboelhadid SM (2016) Epidemiology and public health significance of Cryptosporidium isolated from cattle, buffaloes, and humans in Egypt. Parasitol Res 115(6):2439–2448. https://doi.org/10.1007/s00436-016-4996-3

    CAS  Article  PubMed  Google Scholar 

  36. Yu JR, Lee SU, Park WY (2009) Comparative sensitivity of PCR primer sets for detection of Cryptosporidium parvum. Korean J Parasitol 47(3):293–297. https://doi.org/10.3347/kjp.2009.47.3.293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Geurden T, Levecke B, Caccio SM, Visser A, De Groote G, Casaert S et al (2009) Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhea in human patients in Belgium. Parasitology 136:1161–1168. https://doi.org/10.1017/S0031182009990436

    CAS  Article  Google Scholar 

  38. McLauchlin J, Amar C, Pedraza-Díaz S, Nichols GL (2000) Molecular epidemiological analysis of Cryptosporidium spp. in the United Kingdom: results of genotyping Cryptosporidium spp. in 1,705 fecal samples from humans and 105 fecal samples from livestock animals. J Clin Microbiol 38(11):3984–3990. https://doi.org/10.1128/JCM.38.11.3984-3990.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Llorente MT, Clavel A, Goñi MP, Varea M, Seral C, Becerril R et al (2007) Genetic characterization of Cryptosporidium species from humans in Spain. Parasitol Int 56(3):201–205. https://doi.org/10.1016/j.parint.2007.02.003

    CAS  Article  PubMed  Google Scholar 

  40. Eida AM, Eida MM, El- DA (2009) Pathological studies of different genotypes of human Cryptosporidium Egyptian isolates in experimentally mice. J Egypt Soc Parasitol 39(3):975–990

    PubMed  Google Scholar 

  41. Abd El-Kader MN, Blanco M, Tammam MA, Abd El-GhaffarAel R, Osman A, El- Sheikh N et al (2012) Detection of Cryptosporidium parvum and Cryptosporidium hominis in human patients in Cairo, Egypt. Parasitol Res 110(1):154–159. https://doi.org/10.1007/s00436-011-2465-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge El-Shatby Hospital, Alexandria University that facilitated the achievement of this work and they are also grateful to the children's parents for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Farahat Allam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H.S., Shehab, A.Y., Allam, A.F. et al. Detection and Molecular Identification of Cryptosporidium Species Among Children with Malignancies. Acta Parasit. 66, 377–383 (2021). https://doi.org/10.1007/s11686-020-00250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00250-x

Keywords

  • Cryptosporidiosis
  • MZN
  • Nested PCR
  • RFLP
  • Leukemia
  • Children