Skip to main content
Log in

lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload–induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387–407

    Article  CAS  PubMed  Google Scholar 

  2. Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98(2): 74–84

    Article  CAS  PubMed  Google Scholar 

  3. Dorn GW2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015; 29(19): 1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woodall BP, Gustafsson AB. Autophagy—a key pathway for cardiac health and longevity. Acta Physiol (Oxf) 2018; 223(4): e13074

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Liu B, Qin Y, Li A, Gao M, Liu H, Gong G. Mitochondrial fusion protein Mfn2 and its role in heart failure. Front Mol Biosci 2021; 8: 681237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, Pegoraro V, Angelini C, Antonini A, Bertoli A, Brini M, Ziviani E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 2018; 138: 43–56

    Article  CAS  PubMed  Google Scholar 

  7. Casellas-Díaz S, Larramona-Arcas R, Riqué-Pujol G, Tena-Morraja P, Müller-Sánchez C, Segarra-Mondejar M, Gavaldè-Navarro A, Villarroya F, Reina M, Martínez-Estrada OM, Soriano FX. Mfn2 localization in the ER is necessary for its bioenergetic function and neuritic development. EMBO Rep 2021; 22(9): e51954

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu L, Ding M, Tang D, Gao E, Li C, Wang K, Qi B, Qiu J, Zhao H, Chang P, Fu F, Li Y. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics 2019; 9(13): 3687–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92(7): 583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW2nd. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab 2017; 26(6): 872–883.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu X, Su YL, Shi JY, Lu Q, Chen C. MicroRNA-17-5p promotes cardiac hypertrophy by targeting Mfn2 to inhibit autophagy. Cardiovasc Toxicol 2021; 21(9): 759–771

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Qin D, Shi H, Zhang Y, Li H, Han Q. MiR-195-5p promotes cardiomyocyte hypertrophy by targeting MFN2 and FBXW7. BioMed Res Int 2019; 2019: 1580982

    PubMed  PubMed Central  Google Scholar 

  13. Shen S, Jiang H, Bei Y, Xiao J, Li X. Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 2017; 41(5): 1830–1837

    Article  CAS  PubMed  Google Scholar 

  14. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res 2015; 116(4): 737–750

    Article  CAS  PubMed  Google Scholar 

  15. Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 2016; 67(10): 1214–1226

    Article  CAS  PubMed  Google Scholar 

  16. Viereck J, Thum T. Long noncoding RNAs in pathological cardiac remodeling. Circ Res 2017; 120(2): 262–264

    Article  CAS  PubMed  Google Scholar 

  17. Su W, Huo Q, Wu H, Wang L, Ding X, Liang L, Zhou L, Zhao Y, Dan J, Zhang H. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci 2021; 11(1): 153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Viereck J, Bührke A, Foinquinos A, Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S, Ramanujam D, Kraft T, Cebotari S, Gueler F, Beyer AM, Schmitz J, Bräsen JH, Schmitto JD, Gyöngyösi M, Löser A, Hirt MN, Eschenhagen T, Engelhardt S, Bär C, Thum T. Targeting muscle-enriched long non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur Heart J 2020; 41(36): 3462–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T. Long noncoding RNA ChAST promotes cardiac remodeling. Sci Transl Med 2016; 8(326): 326ra22

    Article  PubMed  Google Scholar 

  20. Fan J, Li H, Xie R, Zhang X, Nie X, Shi X, Zhan J, Yin Z, Zhao Y, Dai B, Yuan S, Wen Z, Chen C, Wang DW. LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res 2021; 128(11): 1708–1723

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Nie J, Wu L, Hu Y, Wen Z, Dong L, Zou MH, Chen C, Wang DW. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ Res 2018; 122(5): 712–729

    Article  CAS  PubMed  Google Scholar 

  22. Xie R, Fan J, Wen J, Jin K, Zhan J, Yuan S, Tang Y, Nie X, Wen Z, Li H, Chen C, Wang DW. LncRNA ZNF593-AS alleviates diabetic cardiomyopathy via suppressing IRF3 signaling pathway. Mol Ther Nucleic Acids 2023; 32: 689–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. deAlmeida AC, van Oort RJ, Wehrens XH. Transverse aortic constriction in mice. J Vis Exp 2010; (38), 1729

  24. Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, Henault M, Mostacci N, Farmer P, Renner S, Ihry R, Mansur L, Keller CG, McAllister G, Hild M, Jenkins J, Kaykas A. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun 2018; 9(1): 4307

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nie X, Fan J, Li H, Yin Z, Zhao Y, Dai B, Dong N, Chen C, Wang DW. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucleic Acids 2018; 12: 254–266

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016; 97: 245–262

    Article  CAS  PubMed  Google Scholar 

  27. Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. Free Radic Biol Med 2021; 166: 297–312

    Article  CAS  PubMed  Google Scholar 

  28. Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, Hsu YA, Kolwicz SCJr, Raftery D, Tian R. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res 2020; 126(2): 182–196

    Article  CAS  PubMed  Google Scholar 

  29. El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med 2016; 3: 25

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, Ikeda S, Shirakabe A, Sadoshima J. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 2019; 124(9): 1360–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391: 42–53

    Article  CAS  PubMed  Google Scholar 

  32. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21(4): 204–224

    Article  CAS  PubMed  Google Scholar 

  33. Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 2017; 982: 277–306

    Article  CAS  PubMed  Google Scholar 

  34. Du J, Liu Y, Fu J. Autophagy and heart failure. Adv Exp Med Biol 2020; 1207: 223–227

    Article  CAS  PubMed  Google Scholar 

  35. Jin JY, Wei XX, Zhi XL, Wang XH, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 2021; 42(5): 655–664

    Article  CAS  PubMed  Google Scholar 

  36. Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 2016; 133(13): 1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003; 160(2): 189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287(28): 23615–23625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141(4): 656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yao CH, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 2019; 8: e41351

    Article  PubMed  PubMed Central  Google Scholar 

  41. Soriano FX, Liesa M, Bach D, Chan DC, Palacin M, Zorzano A. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-γ coactivoto1-1 α, estrogen-related receptor-a, and mitofusin 2. Diabetes 2006; 55(6): 1783–1791

    Article  CAS  PubMed  Google Scholar 

  42. Sulkshane P, Ram J, Thakur A, Reis N, Kleifeld O, Glickman MH. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol 2021; 45: 102047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu Y, Chen H, Zhang L, Lin X, Li X, Zhuang H, Fan H, Meng T, He Z, Huang H, Gong Q, Zhu D, Xu Y, He P, Li L, Feng D. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 2021; 17(5): 1142–1156

    Article  CAS  PubMed  Google Scholar 

  44. Feng S, Gao L, Zhang D, Tian X, Kong L, Shi H, Wu L, Huang Z, Du B, Liang C, Zhang Y, Yao R. miR-93 regulates vascular smooth muscle cell proliferation, and neointimal formation through targeting Mfn2. Int J Biol Sci 2019; 15(12): 2615–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu T, Wang B, Li G, Dong X, Yu G, Qian Q, Duan L, Li H, Jia Z, Bai J. Disruption of microRNA-214 during general anaesthesia prevents brain injury and maintains mitochondrial fusion by promoting Mfn2 interaction with Pkm2. J Cell Mol Med 2020; 24(23): 13589–13599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 2021; 144(4): 303–317

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, González-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 regulate physiological and pathological cardiac growth. Circulation 2022; 145(16): 1218–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 2016; 22(10): 1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003; 65(1): 45–79

    Article  CAS  PubMed  Google Scholar 

  50. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322(22): 1561–1566

    Article  CAS  PubMed  Google Scholar 

  51. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007; 446(7134): 444–448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Nos. 82100399, 82100400, and 81790624) and the project funded by China Postdoctoral Science Foundation (No. 2021M701315). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank colleagues in Dr. Wang’s group for various technical help and stimulating discussion during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaping Li or Dao Wen Wang.

Ethics declarations

Conflict of interests Xiang Nie, Jiahui Fan, Yanwen Wang, Rong Xie, Chen Chen, Huaping Li, and Dao Wen Wang declare that they have no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed. All animal experimental protocols complied with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health as well as the Animal Research: Reporting of In Vivo Experiments guidelines. This study was approved by the Institutional Animal Research Committee of Tongji Medical College.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Fan, J., Wang, Y. et al. lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression. Front. Med. (2024). https://doi.org/10.1007/s11684-023-1036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1036-4

Keywords

Navigation