Skip to main content
Log in

Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography–mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 17071

    Article  PubMed  Google Scholar 

  2. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084–2098

    Article  PubMed  Google Scholar 

  3. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377(2): 162–172

    Article  CAS  PubMed  Google Scholar 

  4. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet 2022; 400(10360): 1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keller MF, Ferrucci L, Singleton AB, Tienari PJ, Laaksovirta H, Restagno G, Chiò A, Traynor BJ, Nalls MA. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 2014; 71(9): 1123–1134

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018; 17(1): 94–102

    Article  CAS  PubMed  Google Scholar 

  7. Cook C, Petrucelli L. Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 2019; 101(6): 1057–1069

    Article  CAS  PubMed  Google Scholar 

  8. McCauley ME, O’Rourke JG, Yáñez A, Markman JL, Ho R, Wang X, Chen S, Lall D, Jin M, Muhammad AKMG, Bell S, Landeros J, Valencia V, Harms M, Arditi M, Jefferies C, Baloh RH. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 2020; 585(7823): 96–101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 2020; 183(3): 636–649.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coque E, Salsac C, Espinosa-Carrasco G, Varga B, Degauque N, Cadoux M, Crabé R, Virenque A, Soulard C, Fierle JK, Brodovitch A, Libralato M, Végh AG, Venteo S, Scamps F, Boucraut J, Laplaud D, Hernandez J, Gergely C, Vincent T, Raoul C. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci USA 2019; 116(6): 2312–2317

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 2019; 18(2): 211–220

    Article  CAS  PubMed  Google Scholar 

  12. McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 2019; 137(5): 715–730

    Article  CAS  PubMed  Google Scholar 

  13. Fournier CN, Schoenfeld D, Berry JD, Cudkowicz ME, Chan J, Quinn C, Brown RH, Salameh JS, Tansey MG, Beers DR, Appel SH, Glass JD. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(3–4): 242–249

    Article  CAS  PubMed  Google Scholar 

  14. Huang H, Weng H, Chen J. The biogenesis and precise control of RNA m6A methylation. Trends Genet 2020; 36(1): 44–52

    Article  CAS  PubMed  Google Scholar 

  15. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017; 169(7): 1187–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017; 18(1): 31–42

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018; 28(6): 616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019; 20(10): 608–624

    Article  CAS  PubMed  Google Scholar 

  19. Xiong X, Hou L, Park YP, Molinie B; GTEx Consortium; Gregory RI, Kellis M. Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet 2021; 53(8): 1156–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McMillan M, Gomez N, Hsieh C, Bekier M, Li X, Miguez R, Tank EMH, Barmada SJ. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia. Mol Cell 2023; 83(2): 219–236.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He F, Krans A, Freibaum BD, Taylor JP, Todd PK. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 2014; 23(19): 5036–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L, Wen M, Cao X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 2019; 365(6454): eaav0758

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling VTK, Trilling M, Mandelboim M, Hanna JH, Schwartz S, Stern-Ginossar N. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 2019; 20(2): 173–182

    Article  CAS  PubMed  Google Scholar 

  24. Vahsen BF, Gray E, Thompson AG, Ansorge O, Anthony DC, Cowley SA, Talbot K, Turner MR. Non-neuronal cells in amyotrophic lateral sclerosis—from pathogenesis to biomarkers. Nat Rev Neurol 2021; 17(6): 333–348

    Article  PubMed  Google Scholar 

  25. Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VM. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 2018; 21(3): 329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020; 21(3): 139–152

    Article  CAS  PubMed  Google Scholar 

  27. Garbuzova-Davis S, Sanberg PR. Blood-CNS barrier impairment in ALS patients versus an animal model. Front Cell Neurosci 2014; 8: 21

    Article  PubMed  PubMed Central  Google Scholar 

  28. Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 2013; 81(14): 1222–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao W, Beers DR, Hooten KG, Sieglaff DH, Zhang A, Kalyana-Sundaram S, Traini CM, Halsey WS, Hughes AM, Sathe GM, Livi GP, Fan GH, Appel SH. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurol 2017; 74(6): 677–685

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, Jolly A, de la Grange P, Mallat M, Bohl D, Millecamps S, Seilhean D, Lobsiger CS, Boillée S. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 2020; 23(11): 1339–1351

    Article  CAS  PubMed  Google Scholar 

  31. Sheean RK, McKay FC, Cretney E, Bye CR, Perera ND, Tomas D, Weston RA, Scheller KJ, Djouma E, Menon P, Schibeci SD, Marmash N, Yerbury JJ, Nutt SL, Booth DR, Stewart GJ, Kiernan MC, Vucic S, Turner BJ. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol 2018; 75(6): 681–689

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Luo K, Zou Z, Qiu M, Tian J, Sieh L, Shi H, Zou Y, Wang G, Morrison J, Zhu AC, Qiao M, Li Z, Stephens M, He X, He C. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 2020; 52(9): 939–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ridderstad Wollberg A, Ericsson-Dahlstrand A, Juréus A, Ekerot P, Simon S, Nilsson M, Wiklund SJ, Berg AL, Ferm M, Sunnemark D, Johansson R. Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. Proc Natl Acad Sci USA 2014; 111(14): 5409–5414

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7): 676–682

    Article  CAS  PubMed  Google Scholar 

  35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573–3587.e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pineda SS, Lee H, Fitzwalter BE, Mohammadi S, Pregent LJ, Gardashli ME, Mantero J, Engelberg-Cook E, DeJesus-Hernandez M, van Blitterswijk M, Pottier C, Rademakers R, Oskarsson B, Shah JS, Petersen RC, Graff-Radford NR, Boeve BF, Knopman DS, Josephs KA, DeTure M, Murray ME, Dickson DW, Heiman M, Belzil VV, Kellis M. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRvix 2021; doi: https://doi.org/10.1101/2021.07.07.451374

  38. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 2016; 44(10): e91

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deng S, Zhang H, Zhu K, Li X, Ye Y, Li R, Liu X, Lin D, Zuo Z, Zheng J. M6A2Target: a comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinform 2021; 22(3): bbaa055

    Article  PubMed  Google Scholar 

  41. Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L, Wang Y, Fan R, Wang X, Shi Y. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7(1): 334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yerbury JJ, Farrawell NE, McAlary L. Proteome homeostasis dysfunction: a unifying principle in ALS pathogenesis. Trends Neurosci 2020; 43(5): 274–284

    Article  CAS  PubMed  Google Scholar 

  43. Katzeff JS, Bright F, Lo K, Kril JJ, Connolly A, Crossett B, Ittner LM, Kassiou M, Loy CT, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Sci Rep 2020; 10(1): 13741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA. Mass spectrometry analysis of plasma from amyotrophic lateral sclerosis and control subjects. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19(5–6): 362–376

    Article  CAS  PubMed  Google Scholar 

  45. King ZT, Butler MT, Hockenberry MA, Subramanian BC, Siesser PF, Graham DM, Legant WR, Bear JE. Coro1B and Coro1C regulate lamellipodia dynamics and cell motility by tuning branched actin turnover. J Cell Biol 2022; 221(8): e202111126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zaritsky A, Tseng YY, Rabadán MA, Krishna S, Overholtzer M, Danuser G, Hall A. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol 2017; 216(6): 1543–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia Z, Wan X. ISYNA1: an immunomodulatory-related prognostic biomarker in colon adenocarcinoma and pan-cancer. Front Cell Dev Biol 2022; 10: 792564

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21(5): 465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He D, Xu Y, Liu M, Cui L. The inflammatory puzzle: piecing together the links between neuroinflammation and amyotrophic lateral sclerosis. Aging Dis 2023; 15(1): 96–114

    Article  Google Scholar 

  50. Shulman Z, Stern-Ginossar N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 2020; 21(5): 501–512

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Dou X, Liu J, Xiao Y, Zhang Z, Hayes L, Wu R, Fu X, Ye Y, Yang B, Ostrow LW, He C, Sun S. Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration. Nat Neurosci 2023; 26(8): 1328–1338

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117–120

    Article  ADS  PubMed  Google Scholar 

  53. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Hüttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S, Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J, Chen J. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018; 20(3): 285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song RH, Du P, Gao CQ, Liu XR, Zhang JA. METTL3 is involved in the development of Graves’ disease by inducing SOCS mRNA m6A modification. Front Endocrinol (Lausanne) 2021; 12: 666393

    Article  PubMed  Google Scholar 

  55. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017; 548(7667): 338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 2017; 5; 356(6337): 513–519

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 2021; 37(6): 109968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goodman WA, Bedoyan SM, Havran HL, Richardson B, Cameron MJ, Pizarro TT. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci USA 2020; 117(29): 17166–17176

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smeets E, Huang S, Lee XY, Van Nieuwenhove E, Helsen C, Handle F, Moris L, El Kharraz S, Eerlings R, Devlies W, Willemsen M, Bücken L, Prezzemolo T, Humblet-Baron S, Voet A, Rochtus A, Van Schepdael A, de Zegher F, Claessens F. A disease-associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. J Cachexia Sarcopenia Muscle 2022; 13(4): 2242–2253

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee HK, Chaboub LS, Zhu W, Zollinger D, Rasband MN, Fancy SP, Deneen B. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron 2015; 85(6): 1227–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ding X, Jo J, Wang CY, Cristobal CD, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi JM, Mohila CA, Kawabe H, Jung SY, Bellen HJ, Yoo SH, Lee HK. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev 2020; 34(17–18): 1177–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jo J, Woo J, Cristobal CD, Choi JM, Wang CY, Ye Q, Smith JA, Ung K, Liu G, Cortes D, Jung SY, Arenkiel BR, Lee HK. Regional heterogeneity of astrocyte morphogenesis dictated by the formin protein, Daam2, modifies circuit function. EMBO Rep 2021; 22(12): e53200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao D, Zhou Y, Huo Y, Meng J, Xiao X, Han L, Zhang X, Luo H, Can D, Sun H, Huang TY, Wang X, Zhang J, Liu FR, Xu H, Zhang YW. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ 2021; 28(1): 337–348

    Article  CAS  PubMed  Google Scholar 

  64. Calvo A, Moglia C, Canosa A, Cammarosano S, Ilardi A, Bertuzzo D, Traynor BJ, Brunetti M, Barberis M, Mora G, Casale F, Chiò A. Common polymorphisms of chemokine (C-X3-C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: a population-based study. Muscle Nerve 2018; 57(2): 212–216

    Article  CAS  PubMed  Google Scholar 

  65. Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodriguez MJ, Mahy N, Vidal-Taboada JM. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 2014; 9(5): e96528

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2022; 231: 107989

    Article  CAS  PubMed  Google Scholar 

  67. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci 2018; 21(10): 1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9(7): 917–924

    Article  CAS  PubMed  Google Scholar 

  69. Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE. Role of the fractalkine receptor in CNS autoimmune inflammation: new approach utilizing a mouse model expressing the human CX3CR1I249/M280 variant. Front Cell Neurosci 2018; 12(October): 365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Inoue K, Morimoto H, Ohgidani M, Ueki T. Modulation of inflammatory responses by fractalkine signaling in microglia. PLoS One 2021; 16(5): e0252118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fernández de Cossío L, Lacabanne C, Bordeleau M, Castino G, Kyriakakis P, Tremblay MÈ. Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav Immun 2021; 97(April): 440–454

    Article  PubMed  Google Scholar 

  72. Wang J, Yan S, Lu H, Wang S, Xu D. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm 2019; 2019: 3120391

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun 2019; 10(1): 1898

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Feng Z, Li Q, Meng R, Yi B, Xu Q. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J Cell Mol Med 2018; 22(5): 2558–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jara JH, Gautam M, Kocak N, Xie EF, Mao Q, Bigio EH, Özdinler PH. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J Neuroinflammation 2019; 16(1): 196

    Article  PubMed  PubMed Central  Google Scholar 

  76. Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, Aronica E, Bernardini G, Peng L, Ransohoff RM, Santoni A, Limatola C. Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun 2020; 11(1): 1773

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin CV, Nimmerjahn A, Lemke G. TAM receptors regulate multiple features of microglial physiology. Nature 2016; 532(7598): 240–244

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang Y, Happonen K, Burrola P, O’Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G. Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat. Immunol 2021; 22(5): 586–594

    CAS  Google Scholar 

  79. Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, Brady OA, Hernandez JCC, Nishimura N, Seeley WW, Hu F. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 2017; 8(1): 15277

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, Appel SH. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp Neurol 2015; 273: 24–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support received from our collaborators. The LC-MS and PRM were performed at Beijing Bioms Technology Co. Ltd. MeRIP-seq and MeRIP-qPCR were performed at Tianhao Co. Ltd. We would like to thank all patients and their families in participating and supporting this study. We also thank Dr. Boxuan Zhao for constructive discussion. We are obliged to Pineda et al. for making their human primary motor cortex scRNA-seq data publicly available.

This work was supported by the Strategic Priority Research Program (Pilot study) “Biological basis of aging and therapeutic strategies” of the Chinese Academy of Sciences (No. XDB39040000), CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-003 and 2021-I2M-1-034), National High Level Hospital Clinical Research Funding (No. 2022-PUMCH-B-017), Beijing Natural Science Foundation (No. 7202158), National Natural Science Foundation of China (No. 81971293).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Zhang or Liying Cui.

Ethics declarations

Conflicts of interest Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, and Liying Cui declare that they have no conflict of interest to be disclosed. The funding party is not involved in any aspect pertinent to the study, and none of the authors is financially related to pharmaceutical company or other agency.

The study was approved by the PUMCH Research Ethical Boards (Ethical Approval No. JS-2624) and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Yang, X., Liu, L. et al. Dysregulated N6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis. Front. Med. (2024). https://doi.org/10.1007/s11684-023-1035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1035-5

Keywords

Navigation