Skip to main content
Log in

Associations of sleeping patterns and isotemporal substitution of other behavior with the prevalence of CKD in Chinese adults

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Studies have found a U-shaped relationship between sleep duration and chronic kidney disease (CKD) risk, but limited research evaluated the association of reallocating excessive sleep to other behavior with CKD. We included 104 538 participants from the nationwide cohort of the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal Study, with self-reported time of daily-life behavior. Using isotemporal substitution models, we found that substituting 1 h of sleeping with sitting, walking, or moderate-to-vigorous physical activity was associated with a lower CKD prevalence. Leisure-time physical activity displacement was associated with a greater prevalence reduction than occupational physical activity in working population. In stratified analysis, a lower CKD prevalence related to substitution toward physical activity was found in long sleepers. More pronounced correlations were observed in long sleepers with diabetes than in those with prediabetes, and they benefited from other behavior substitutions toward a more active way. The U-shaped association between sleep duration and CKD prevalence implied the potential effects of insufficient and excessive sleep on the kidneys, in which the pernicious link with oversleep could be reversed by time reallocation to physical activity. The divergence in the predicted effect on CKD following time reallocation to behavior of different domains and intensities and in subpopulations with diverse metabolic statuses underlined the importance of optimizing sleeping patterns and adjusting integral behavioral composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liyanage T, Toyama T, Hockham C, Ninomiya T, Perkovic V, Woodward M, Fukagawa M, Matsushita K, Praditpornsilpa K, Hooi LS, Iseki K, Lin MY, Stirnadel-Farrant HA, Jha V, Jun M. Prevalence of chronic kidney disease in Asia: a systematic review and analysis. BMJ Glob Health 2022; 7(1): e007525

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet 2021; 398(10302): 786–802

    Article  PubMed  CAS  Google Scholar 

  3. Bo Y, Yeoh EK, Guo C, Zhang Z, Tam T, Chan TC, Chang LY, Lao XQ. Sleep and the risk of chronic kidney disease: a cohort study. J Clin Sleep Med 2019; 15(3): 393–400

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hao Q, Xie M, Zhu L, Dou Y, Dai M, Wu Y, Tang X, Wang Q. Association of sleep duration with chronic kidney disease and proteinuria in adults: a systematic review and dose-response metaanalysis. Int Urol Nephrol 2020; 52(7): 1305–1320

    Article  PubMed  Google Scholar 

  5. Sun H, Qin K, Zou C, Wang HH, Lu C, Chen W, Guo VY. The association of nighttime sleep duration and quality with chronic kidney disease in middle-aged and older Chinese: a cohort study. Sleep Med 2021; 86: 25–31

    Article  PubMed  Google Scholar 

  6. Hirano K, Komatsu Y, Shimbo T, Nakata H, Kobayashi D. Longitudinal relationship between long sleep duration and future kidney function decline. Clin Kidney J 2022; 15(9): 1763–1769

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Yang L, Wang H, Jiang H, Qiu G, Liu Y, Xiao Y, Yang H, Wu T, Zhang X. Longer time spent in bed attempting to sleep is associated with rapid renal function decline: the Dongfeng-Tongji cohort study. Ann Med 2018; 50(2): 172–179

    Article  PubMed  Google Scholar 

  8. Choi H, Kim HC, Lee JY, Lee JM, Choi DP, Suh I. Sleep duration and chronic kidney disease: the Korean Genome and Epidemiology Study (KoGES)-Kangwha study. Korean J Intern Med (Korean Assoc Intern Med) 2017; 32(2): 323–334

    Google Scholar 

  9. Kim CW, Chang Y, Sung E, Yun KE, Jung HS, Ko BJ, Kwon MJ, Hyun YY, Lee KB, Kim H, Shin H, Ryu S. Sleep duration and quality in relation to chronic kidney disease and glomerular hyperfiltration in healthy men and women. PLoS One 2017; 12(4): e0175298

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin M, Su Q, Wen J, Wei S, Yao J, Huang H, Liang J, Li L, Lin W, Lin L, Lu J, Bi Y, Wang W, Ning G, Chen G. Self-reported sleep duration and daytime napping are associated with renal hyperfiltration in general population. Sleep Breath 2018; 22(1): 223–232

    Article  PubMed  Google Scholar 

  11. Yu JH, Han K, Kim NH, Yoo HJ, Seo JA, Kim SG, Choi KM, Baik SH, Kim NH. U-shaped association between sleep duration and urinary albumin excretion in Korean adults: 2011–2014 Korea National Health and Nutrition Examination Survey. PLoS One 2018; 13(2): e0192980

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazidi M, Shekoohi N, Katsiki N, Banach M. Longer sleep duration may negatively affect renal function. Int Urol Nephrol 2021; 53(2): 325–332

    Article  PubMed  CAS  Google Scholar 

  13. Cao Z, Xu C, Zhang P, Wang Y. Associations of sedentary time and physical activity with adverse health conditions: outcome-wide analyses using isotemporal substitution model. EClinicalMedicine 2022; 48: 101424

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee J, Walker ME, Gabriel KP, Vasan RS, Xanthakis V. Associations of accelerometer-measured physical activity and sedentary time with chronic kidney disease: the Framingham Heart Study. PLoS One 2020; 15(6): e0234825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kosaki K, Tanahashi K, Matsui M, Akazawa N, Osuka Y, Tanaka K, Dunstan DW, Owen N, Shibata A, Oka K, Maeda S. Sedentary behaviour, physical activity, and renal function in older adults: isotemporal substitution modelling. BMC Nephrol 2020; 21(1): 211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69

    Article  PubMed Central  Google Scholar 

  17. Lu J, Bi Y, Wang T, Wang W, Mu Y, Zhao J, Liu C, Chen L, Shi L, Li Q, Wan Q, Wu S, Qin G, Yang T, Yan L, Liu Y, Wang G, Luo Z, Tang X, Chen G, Huo Y, Gao Z, Su Q, Ye Z, Wang Y, Deng H, Yu X, Shen F, Chen L, Zhao L, Dai M, Xu M, Xu Y, Chen Y, Lai S, Ning G. The relationship between insulin-sensitive obesity and cardiovascular diseases in a Chinese population: results of the REACTION study. Int J Cardiol 2014; 172(2): 388–394

    Article  PubMed  Google Scholar 

  18. Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann Intern Med 2013; 158(11): 825–830

    Article  PubMed  Google Scholar 

  19. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med 1989; 8(5): 551–561

    Article  PubMed  CAS  Google Scholar 

  20. Galmes-Panades AM, Varela-Mato V, Konieczna J, Warnberg J, Martinez-Gonzalez MA, Salas-Salvado J, Corella D, Schroder H, Vioque J, Alonso-Gomez AM, Martinez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pinto X, Tur JA, Garcia-Rios A, Riquelme-Gallego B, Gaforio JJ, Matia-Martin P, Daimiel L, Mico Perez RM, Vidal J, Vazquez C, Ros E, Garcia-Arellano A, Diaz-Lopez A, Asensio EM, Castaner O, Fiol F, Mira-Castejon LA, Moreno Rodriguez A, Benavente-Marin JC, Abete I, Tomaino L, Casas R, Baron Lopez FJ, Fernandez-Garcia JC, Santos-Lozano JM, Galera A, Mascaro CM, Razquin C, Papandreou C, Portoles O, Perez-Vega KA, Fiol M, Compan-Gabucio L, Vaquero-Luna J, Ruiz-Canela M, Becerra-Tomas N, Fito M, Romaguera D. Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study. Int J Behav Nutr Phys Act 2019; 16(1): 137

    Article  PubMed  PubMed Central  Google Scholar 

  21. Monk TH, Pfoff MK, Zarotney JR. Depression in the spousally bereaved elderly: correlations with subjective sleep measures. Depress Res Treat 2013; 2013: 409538

    PubMed  PubMed Central  Google Scholar 

  22. Zhai L, Zhang H, Zhang D. Sleep duration and depression among adults: a meta-analysis of prospective studies. Depress Anxiety 2015; 32(9): 664–670

    Article  PubMed  Google Scholar 

  23. Lane JM, Vlasac I, Anderson SG, Kyle SD, Dixon WG, Bechtold DA, Gill S, Little MA, Luik A, Loudon A, Emsley R, Scheer FA, Lawlor DA, Redline S, Ray DW, Rutter MK, Saxena R. Genome-wide association analysis identifies novel loci for chronotype in 100 420 individuals from the UK Biobank. Nat Commun 2016; 7(1): 10889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Agarwal R, Light RP. Sleep and activity in chronic kidney disease: a longitudinal study. Clin J Am Soc Nephrol 2011; 6(6): 1258–1265

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jhee JH, Joo YS, Han SH, Yoo TH, Kang SW, Park JT. High muscle-to-fat ratio is associated with lower risk of chronic kidney disease development. J Cachexia Sarcopenia Muscle 2020; 11(3): 726–734

    Article  PubMed  PubMed Central  Google Scholar 

  26. Abdalla M, Sakhuja S, Akinyelure OP, Thomas SJ, Schwartz JE, Lewis CE, Shikany JM, Lloyd-Jones D, Booth JN 3rd, Shimbo D, Hall MH, Muntner P. The association of actigraphy-assessed sleep duration with sleep blood pressure, nocturnal hypertension, and nondipping blood pressure: the coronary artery risk development in young adults (CARDIA) study. J Hypertens 2021; 39(12): 2478–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens 2011; 5(3): 184–192

    Article  PubMed  Google Scholar 

  28. Johansson JK, Kronholm E, Jula AM. Variability in home-measured blood pressure and heart rate: associations with self-reported insomnia and sleep duration. J Hypertens 2011; 29(10): 1897–1905

    Article  PubMed  CAS  Google Scholar 

  29. Pearce M, Strain T, Wijndaele K, Sharp SJ, Mok A, Brage S. Is occupational physical activity associated with mortality in UK Biobank? Int J Behav Nutr Phys Act 2021; 18(1): 102

    Article  PubMed  PubMed Central  Google Scholar 

  30. Holtermann A, Schnohr P, Nordestgaard BG, Marott JL. The physical activity paradox in cardiovascular disease and all-cause mortality: the contemporary Copenhagen General Population Study with 104 046 adults. Eur Heart J 2021; 42(15): 1499–1511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cillekens B, Huysmans MA, Holtermann A, van Mechelen W, Straker L, Krause N, van der Beek AJ, Coenen P. Physical activity at work may not be health enhancing. A systematic review with meta-analysis on the association between occupational physical activity and cardiovascular disease mortality covering 23 studies with 655 892 participants. Scand J Work Environ Health 2022; 48(2): 86–98

    Article  PubMed  PubMed Central  Google Scholar 

  32. Byambasukh O, Snieder H, Corpeleijn E. Relation between leisure time, commuting, and occupational physical activity with blood pressure in 125 402 adults: the lifelines cohort. J Am Heart Assoc 2020; 9(4): e014313

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clays E, De Bacquer D, Janssens H, De Clercq B, Casini A, Braeckman L, Kittel F, De Backer G, Holtermann A. The association between leisure time physical activity and coronary heart disease among men with different physical work demands: a prospective cohort study. Eur J Epidemiol 2013; 28(3): 241–247

    Article  PubMed  Google Scholar 

  34. Wennberg P, Lindahl B, Hallmans G, Messner T, Weinehall L, Johansson L, Boman K, Jansson JH. The effects of commuting activity and occupational and leisure time physical activity on risk of myocardial infarction. Eur J Cardiovasc Prev Rehabil 2006; 13(6): 924–930

    Article  PubMed  Google Scholar 

  35. Honda T, Kuwahara K, Nakagawa T, Yamamoto S, Hayashi T, Mizoue T. Leisure-time, occupational, and commuting physical activity and risk of type 2 diabetes in Japanese workers: a cohort study. BMC Public Health 2015; 15(1): 1004

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ketels M, Rasmussen CL, Korshoj M, Gupta N, De Bacquer D, Holtermann A, Clays E. The relation between domain-specific physical behaviour and cardiorespiratory fitness: a cross-sectional compositional data analysis on the physical activity health paradox using accelerometer-assessed data. Int J Environ Res Public Health 2020; 17(21): 7929

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee J, Kim HR, Jang TW, Lee DW, Lee YM, Kang MY. Occupational physical activity, not leisure-time physical activity, is associated with increased high-sensitivity C reactive protein levels. Occup Environ Med 2021; 78(2): 86–91

    Article  PubMed  Google Scholar 

  38. Fang Y, Son S, Yang J, Oh S, Jo SK, Cho W, Kim MG. Perturbation of circadian rhythm is associated with increased prevalence of chronic kidney disease: results of the Korean Nationwide Population-Based Survey. Int J Environ Res Public Health 2022; 19(9): 5732

    Article  CAS  Google Scholar 

  39. Yang L, Yang H, He M, Pan A, Li X, Min X, Zhang C, Xu C, Zhu X, Yuan J, Wei S, Miao X, Hu FB, Wu T, Zhang X. Longer sleep duration and midday napping are associated with a higher risk of CHD incidence in middle-aged and older Chinese: the Dongfeng-Tongji Cohort Study. Sleep 2016; 39(3): 645–652

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zelle DM, Klaassen G, van Adrichem E, Bakker SJ, Corpeleijn E, Navis G. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol 2017; 13(5): 318

    Article  PubMed  Google Scholar 

  41. Stamatakis E, Rogers K, Ding D, Berrigan D, Chau J, Hamer M, Bauman A. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: a prospective study of 201 129 mid-aged and older adults. Int J Behav Nutr Phys Act 2015; 12(1): 121

    Article  PubMed  PubMed Central  Google Scholar 

  42. Michishita R, Matsuda T, Kawakami S, Tanaka S, Kiyonaga A, Tanaka H, Morito N, Higaki Y. The joint impact of habitual exercise and glycemic control on the incidence of chronic kidney disease (CKD) in middle-aged and older males. Environ Health Prev Med 2017; 22(1): 76

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang IK, Tsai MK, Liang CC, Yen TH, Huang CC, Wen SF, Wen CP. The role of physical activity in chronic kidney disease in the presence of diabetes mellitus: a prospective cohort study. Am J Nephrol 2013; 38(6): 509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all the staff and study participants for their important contributions. This work was supported by the grants from the National Natural Science Foundation of China (Nos. 82088102, 91857205, 82022011, 81970728, and 81930021), the Shanghai Rising-Star Program (No. 21QA1408100), Shanghai Outstanding Academic Leaders Plan (No. 20XD1422800), the National Top Young Scholar Program (Yu Xu), the Innovative Research Team of High-Level Local Universities in Shanghai, the Shanghai Clinical Research Center for Metabolic Diseases (No. 19MC1910100) and the Shanghai Shen Kang Hospital Development Center (Nos. SHDC2020CR1001A and SHDC2020CR3064B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Xu, Yufang Bi or Mian Li.

Ethics declarations

Conflicts of interest Yi Ding, Xiaoli Xu, Zhuojun Xin, Qiuyu Cao, Jiaojiao Huang, Xianglin Wu, Yanan Huo, Qin Wan, Yingfen Qin, Ruying Hu, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Xulei Tang, Gang Chen, Min Xu, Tiange Wang, Zhiyun Zhao, Zhengnan Gao, Guixia Wang, Feixia Shen, Zuojie Luo, Li Chen, Qiang Li, Zhen Ye, Yinfei Zhang, Chao Liu, Youmin Wang, Tao Yang, Huacong Deng, Lulu Chen, Tianshu Zeng, Jiajun Zhao, Yiming Mu, Shengli Wu, Yuhong Chen, Jieli Lu, Weiqing Wang, Guang Ning, Yu Xu, Yufang Bi, and Mian Li declare that they have no conflict of interest.

The study was approved (or granted exemption) by the Medical Ethics Committee of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Xu, X., Xin, Z. et al. Associations of sleeping patterns and isotemporal substitution of other behavior with the prevalence of CKD in Chinese adults. Front. Med. (2023). https://doi.org/10.1007/s11684-023-1019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1019-5

Keywords

Navigation