Skip to main content
Log in

Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

    Article  Google Scholar 

  2. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers 2016; 2(1): 16061

    Article  PubMed  PubMed Central  Google Scholar 

  3. SEER. SEER stat fact sheets: ovarian cancer. 2022. Available at the website of SEER, National Cancer Institute, NIH

  4. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer 2021; 21(1): 22–36

    Article  CAS  PubMed  Google Scholar 

  5. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A, Liu Z. DLGAP1-AS2-mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res 2022; 82(16): 2887–2903

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao L, Wang Y, Wang Z, Jin Y, He MM, Ren C, Wang DS, Chen DL, Pu HY, Feng L, Li B, Xie D, Zeng MS, Huang P, Lin A, Lin D, Xu RH, Ju HQ. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun 2020; 11(1): 1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu L, Huan L, Guo T, Wu Y, Liu Y, Wang Q, Huang S, Xu Y, Liang L, He X. lncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene 2020; 39(46): 7005–7018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96–118

    Article  CAS  PubMed  Google Scholar 

  10. Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W, Chen C. Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer 2022; 21(1): 69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, Kou J, Zhang J, Wen X, Li YQ, Ma J, Liu N, Sun Y. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res 2019; 79(18): 4612–4626

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, Wang Y, Jiang L, Song X, Zheng A, Gao H, Wei M, Zhao L. lncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res 2021; 40(1): 41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lorenzo C, McCormick F. SPRED proteins and their roles in signal transduction, development, and malignancy. Genes Dev 2020; 34(21–22): 1410–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spurlock G, Bennett E, Chuzhanova N, Thomas N, Jim HP, Side L, Davies S, Haan E, Kerr B, Huson SM, Upadhyaya M. SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J Med Genet 2009; 46(7): 431–437

    Article  CAS  PubMed  Google Scholar 

  15. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A. Spred is a Sprouty-related suppressor of Ras signalling. Nature 2001; 412(6847): 647–651

    Article  CAS  PubMed  Google Scholar 

  16. Ablain J, Liu S, Moriceau G, Lo RS, Zon LI. SPRED1 deletion confers resistance to MAPK inhibition in melanoma. J Exp Med 2021; 218(3): e20201097

    Article  CAS  PubMed  Google Scholar 

  17. Qiao J, Liang C, Zhao D, Nguyen LXT, Chen F, Suo S, Hoang DH, Pellicano F, Rodriguez IR, Elhajmoussa Y, Ghoda L, Yoshimura A, Stein AS, Ali H, Koller P, Perrotti D, Copland M, Han A, Zhang BA, Marcucci G. Spred1 deficit promotes treatment resistance and transformation of chronic phase CML. Leukemia 2022; 36(2): 492–506

    Article  CAS  PubMed  Google Scholar 

  18. Jiang CF, Shi ZM, Li DM, Qian YC, Ren Y, Bai XM, Xie YX, Wang L, Ge X, Liu WT, Zhen LL, Liu LZ, Jiang BH. Estrogen-induced miR-196a elevation promotes tumor growth and metastasis via targeting SPRED1 in breast cancer. Mol Cancer 2018; 17(1): 83

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017; 15(3): 177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48(D1): D127–D131

    Article  CAS  PubMed  Google Scholar 

  21. Mo SP, Coulson JM, Prior IA. RAS variant signalling. Biochem Soc Trans 2018; 46(5): 1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72(10): 2457–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nonami A, Taketomi T, Kimura A, Saeki K, Takaki H, Sanada T, Taniguchi K, Harada M, Kato R, Yoshimura A. The Sprouty-related protein, Spred-1, localizes in a lipid raft/caveola and inhibits ERK activation in collaboration with caveolin-1. Genes Cells 2005; 10(9): 887–895

    Article  CAS  PubMed  Google Scholar 

  24. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin 2018; 68(4): 284–296

    Article  PubMed  PubMed Central  Google Scholar 

  25. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7–33

    Article  PubMed  Google Scholar 

  26. Jia Y, Tian C, Wang H, Yu F, Lv W, Duan Y, Cheng Z, Wang X, Wang Y, Liu T, Wang J, Liu L. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer 2021; 20(1): 162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu HT, Liu S, Liu L, Ma RR, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018; 78(20): 5877–5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang J, Yan T, Bao Y, Shen C, Yu C, Zhu X, Tian X, Guo F, Liang Q, Liu Q, Zhong M, Chen J, Ge Z, Li X, Chen X, Cui Y, Chen Y, Zou W, Chen H, Hong J, Fang JY. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat Commun 2019; 10(1): 3499

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75(3): 467–484

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26(11): 2329–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu YP, Jin YP, Wu XS, Yang Y, Li YS, Li HF, Xiang SS, Song XL, Jiang L, Zhang YJ, Huang W, Chen SL, Liu FT, Chen C, Zhu Q, Chen HZ, Shao R, Liu YB. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer 2019; 18(1): 167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo A, Zhou X, Shi X, Zhao Y, Men Y, Chang X, Chen H, Ding F, Li Y, Su D, Xiao Z, Hui Z, Liu Z. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene 2019; 38(25): 4990–5006

    Article  CAS  PubMed  Google Scholar 

  33. Vescarelli E, Gerini G, Megiorni F, Anastasiadou E, Pontecorvi P, Solito L, De Vitis C, Camero S, Marchetti C, Mancini R, Benedetti Panici P, Dominici C, Romano F, Angeloni A, Marchese C, Ceccarelli S. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. J Exp Clin Cancer Res 2020; 39(1): 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li ZY, Xie Y, Deng M, Zhu L, Wu X, Li G, Shi NX, Wen C, Huang W, Duan Y, Yin Z, Lin XJ. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett 2022; 526: 322–334

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, Bao H, Jin H, Liang P. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 2019; 38(1): 380

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Li J, Zhao H, Liu X, Ye X. DNAJC2 is reversely regulated by miR-627-3p, promoting the proliferation of colorectal cancer. Mol Med Rep 2021; 24(2): 589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, Zhang X, Sang M. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett 2021; 519: 117–129

    Article  CAS  PubMed  Google Scholar 

  38. Li D, Wang L, Feng J, Shen YW, Liu LN, Wang Y. RP11-284F21.9 promotes lung carcinoma proliferation and invasion via the regulation of miR-627-3p/CCAR1. Oncol Rep 2020; 44(4): 1638–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, Lapillonne H, Deswarte C, Goussard P, Laurendeau I, Uzan B, Pflumio F, Brizard F, Vabres P, Naguibvena I, Fasola S, Millot F, Porteu F, Vidaud D, Landman-Parker J, Ballerini P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2015; 34(5): 631–638

    Article  CAS  PubMed  Google Scholar 

  40. Ablain J, Xu M, Rothschild H, Jordan RC, Mito JK, Daniels BH, Bell CF, Joseph NM, Wu H, Bastian BC, Zon LI, Yeh I. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 2018; 362(6418): 1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brems H, Legius E. Legius syndrome, an Update. Molecular pathology of mutations in SPRED1. Keio J Med 2013; 62(4): 107–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (No. 2021YFC2501000) and the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-018 and 2021-I2M-1-067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhumei Cui or Zhihua Liu.

Ethics declarations

Pengfei Zhao, Yating Wang, Xiao Yu, Yabing Nan, Shi Liu, Bin Li, Zhumei Cui, and Zhihua Liu declare that they have no conflict of interest. All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Wang, Y., Yu, X. et al. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis. Front. Med. 17, 924–938 (2023). https://doi.org/10.1007/s11684-023-1004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-1004-z

Keywords

Navigation