Skip to main content
Log in

Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin’s lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol 2017; 35(21): 2410–2418

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baraniskin A, Schroers R. Liquid biopsy and other non-invasive diagnostic measures in PCNSL. Cancers (Basel) 2021; 13(11): 2665

    CAS  PubMed  Google Scholar 

  3. van der Meulen M, Dinmohamed AG, Visser O, Doorduijn JK, Bromberg JEC. Improved survival in primary central nervous system lymphoma up to age 70 only: a population-based study on incidence, primary treatment and survival in the Netherlands, 1989–2015. Leukemia 2017; 31(8): 1822–1825

    CAS  PubMed  Google Scholar 

  4. Kim P, Omuro A. Consolidation therapy in primary central nervous system lymphoma. Curr Treat Options Oncol 2020; 21(9): 74

    PubMed  Google Scholar 

  5. Courts C, Montesinos-Rongen M, Brunn A, Bug S, Siemer D, Hans V, Blümcke I, Klapper W, Schaller C, Wiestler OD, Küppers R, Siebert R, Deckert M. Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 2008; 67(7): 720–727

    CAS  PubMed  Google Scholar 

  6. Montesinos-Rongen M, Schmitz R, Brunn A, Gesk S, Richter J, Hong K, Wiestler OD, Siebert R, Küppers R, Deckert M. Mutations of CARD11 but not TNFAIP3 may activate the NF-kB pathway in primary CNS lymphoma. Acta Neuropathol 2010; 120(4): 529–535

    CAS  PubMed  Google Scholar 

  7. Montesinos-Rongen M, Zühlke-Jenisch R, Gesk S, Martín-Subero JI, Schaller C, Van Roost D, Wiestler OD, Deckert M, Siebert R. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system. J Neuropathol Exp Neurol 2002; 61(10): 926–933

    CAS  PubMed  Google Scholar 

  8. Braggio E, Van Wier S, Ojha J, McPhail E, Asmann YW, Egan J, da Silva JA, Schiff D, Lopes MB, Decker PA, Valdez R, Tibes R, Eckloff B, Witzig TE, Stewart AK, Fonseca R, O’Neill BP. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 2015; 21(17): 3986–3994

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, Ueda H, Yasuda T, Yamaguchi H, Lee J, Shishido-Hara Y, Sasaki A, Shirahata M, Mishima K, Ichimura K, Mukasa A, Narita Y, Saito N, Aburatani H, Nishikawa R, Nagane M, Mano H. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 2016; 131(6): 865–875

    CAS  PubMed  Google Scholar 

  10. Zhou Y, Liu W, Xu Z, Zhu H, Xiao D, Su W, Zeng R, Feng Y, Duan Y, Zhou J, Zhong M. Analysis of genomic alteration in primary central nervous system lymphoma and the expression of some related genes. Neoplasia 2018; 20(10): 1059–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang PP, Liu SH, Chen CT, Lv L, Li D, Liu QY, Liu GL, Wu Y. Circulating tumor cells as a new predictive and prognostic factor in patients with small cell lung cancer. J Cancer 2020; 11(8): 2113–2122

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, Zhang C, Ren X, Protopopov A, Chin L, Kucherlapati R, Lee C, Park PJ. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013; 153(4): 919–929

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu S, Ou T, Xing N, Lu J, Wan S, Wang C, Zhang X, Yang F, Huang Y, Cai Z. Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer. Nat Commun 2019; 10(1): 720

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chapuy B, Roemer MGM, Stewart C, Tan Y, Abo RP, Zhang L, Dunford AJ, Meredith DM, Thorner AR, Jordanova ES, Liu G, Feuerhake F, Ducar MD, Illerhaus G, Gusenleitner D, Linden EA, Sun HH, Homer H, Aono M, Pinkus GS, Ligon AH, Ligon KL, Ferry JA, Freeman GJ, van Hummelen P, Golub TR, Getz G, Rodig SJ, de Jong D, Monti S, Shipp MA. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016; 127(7): 869–881

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Braggio E, McPhail ER, Macon W, Lopes MB, Schiff D, Law M, Fink S, Sprau D, Giannini C, Dogan A, Fonseca R, O’Neill BP. Primary central nervous system lymphomas: a validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. Clin Cancer Res 2011; 17(13): 4245–4253

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Booman M, Szuhai K, Rosenwald A, Hartmann E, Kluin-Nelemans H, de Jong D, Schuuring E, Kluin P. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 2008; 216(2): 209–217

    CAS  PubMed  Google Scholar 

  18. Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, Fronick CC, Fulton RS, Kreisel F, Cashen AF, Carson KR, Berrien-Elliott MM, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 2017; 129(4): 473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vater I, Montesinos-Rongen M, Schlesner M, Haake A, Purschke F, Sprute R, Mettenmeyer N, Nazzal I, Nagel I, Gutwein J, Richter J, Buchhalter I, Russell RB, Wiestler OD, Eils R, Deckert M, Siebert R. The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 2015; 29(3): 677–685

    CAS  PubMed  Google Scholar 

  20. Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, Adam C, Figarella-Branger D, Miquel C, Eimer S, Houillier C, Soussain C, Mokhtari K, Daveau R, Hoang-Xuan K. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2014; 5(13): 5065–5075

    PubMed  PubMed Central  Google Scholar 

  21. Takashima Y, Sasaki Y, Hayano A, Homma J, Fukai J, Iwadate Y, Kajiwara K, Ishizawa S, Hondoh H, Tokino T, Yamanaka R. Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 2018; 9(44): 27471–27486

    PubMed  PubMed Central  Google Scholar 

  22. Zhu Q, Wang J, Zhang W, Zhu W, Wu Z, Chen Y, Chen M, Zheng L, Tang J, Zhang S, Wang D, Wang X, Chen G. Whole-genome/exome sequencing uncovers mutations and copy number variations in primary diffuse large B-cell lymphoma of the central nervous system. Front Genet 2022; 13: 878618

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, Scott DW, Ding J, Roth A, Chiu R, Corbett RD, Chan FC, Mendez-Lago M, Trinh DL, Bolger-Munro M, Taylor G, Hadj Khodabakhshi A, Ben-Neriah S, Pon J, Meissner B, Woolcock B, Farnoud N, Rogic S, Lim EL, Johnson NA, Shah S, Jones S, Steidl C, Holt R, Birol I, Moore R, Connors JM, Gascoyne RD, Marra MA. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013; 122(7): 1256–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren W, Ye X, Su H, Li W, Liu D, Pirmoradian M, Wang X, Zhang B, Zhang Q, Chen L, Nie M, Liu Y, Meng B, Huang H, Jiang W, Zeng Y, Li W, Wu K, Hou Y, Wiman KG, Li Z, Zhang H, Peng R, Zhu S, Pan-Hammarström Q. Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood 2018; 131(24): 2670–2681

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, Hodson DJ, Xiao W, Yu X, Yang Y, Zhao H, Xu W, Liu X, Zhou B, Du W, Chan WC, Jaffe ES, Gascoyne RD, Connors JM, Campo E, Lopez-Guillermo A, Rosenwald A, Ott G, Delabie J, Rimsza LM, Tay Kuang Wei K, Zelenetz AD, Leonard JP, Bartlett NL, Tran B, Shetty J, Zhao Y, Soppet DR, Pittaluga S, Wilson WH, Staudt LM. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 2018; 378(15): 1396–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu PF, Li C, Xi SY, Chen FR, Wang J, Zhang ZQ, Liu Y, Li X, Chen ZP. Whole exome sequencing reveals the genetic heterogeneity and evolutionary history of primary gliomas and matched recurrences. Comput Struct Biotechnol J 2022; 20: 2235–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF, Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 2013; 45(3): 285–289

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim J, Hwang K, Kwon HJ, Lee JE, Lee KS, Choe G, Han JH, Kim CY. Clinicopathologic characteristics of grade 2/3 meningiomas: a perspective on the role of next-generation sequencing. Front Oncol 2022; 12: 885155

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreri AJM, Blay JY, Reni M, Pasini F, Spina M, Ambrosetti A, Calderoni A, Rossi A, Vavassori V, Conconi A, Devizzi L, Berger F, Ponzoni M, Borisch B, Tinguely M, Cerati M, Milani M, Orvieto E, Sanchez J, Chevreau C, Dell’Oro S, Zucca E, Cavalli F. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. J Clin Oncol 2003; 21(2): 266–272

    PubMed  Google Scholar 

  30. Abrey LE, Ben-Porat L, Panageas KS, Yahalom J, Berkey B, Curran W, Schultz C, Leibel S, Nelson D, Mehta M, DeAngelis LM. Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. J Clin Oncol 2006; 24(36): 5711–5715

    PubMed  Google Scholar 

  31. Radke J, Ishaque N, Koll R, Gu Z, Schumann E, Sieverling L, Uhrig S, Hübschmann D, Toprak UH, López C, Hostench XP, Borgoni S, Juraeva D, Pritsch F, Paramasivam N, Balasubramanian GP, Schlesner M, Sahay S, Weniger M, Pehl D, Radbruch H, Osterloh A, Korfel A, Misch M, Onken J, Faust K, Vajkoczy P, Moskopp D, Wang Y, Jödicke A, Trümper L, Anagnostopoulos I, Lenze D, Küppers R, Hummel M, Schmitt CA, Wiestler OD, Wolf S, Unterberg A, Eils R, Herold-Mende C, Brors B; ICGC MMML-Seq Consortium; Siebert R, Wiemann S, Heppner FL. The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13(1): 2558

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 2012; 18(19): 5203–5211

    CAS  PubMed  Google Scholar 

  33. Pecqueux C, Arslan A, Heller M, Falkenstein M, Kaczorowski A, Tolstov Y, Sultmann H, Grullich C, Herpel E, Duensing A, Kristiansen G, Hohenfellner M, Navone NM, Duensing S. FGF-2 is a driving force for chromosomal instability and a stromal factor associated with adverse clinico-pathological features in prostate cancer. Urol Oncol 2018; 36(8): 365e315–365e326

    Google Scholar 

  34. Guo K, Ma Z, Zhang Y, Han L, Shao C, Feng Y, Gao F, Di S, Zhang Z, Zhang J, Tabbò F, Ekman S, Suda K, Cappuzzo F, Han J, Li X, Yan X. HDAC7 promotes NSCLC proliferation and metastasis via stabilization by deubiquitinase USP10 and activation of β-catenin-FGF18 pathway. J Exp Clin Cancer Res 2022; 41(1): 91

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Z, Cai Y, Liu W, Kang F, He Q, Hong Q, Zhang W, Li J, Yan Y, Peng J. Downregulated exosome-associated gene FGF9 as a novel diagnostic and prognostic target for ovarian cancer and its underlying roles in immune regulation. Aging (Albany NY) 2022; 14(4): 1822–1835

    CAS  PubMed  Google Scholar 

  36. Chen YX, Liu XJ, Yang L, He JJ, Jiang YM, Mai J. Systematic analysis of expression profiles and prognostic significance of the FGF gene family in pancreatic adenocarcinoma. Oncol Lett 2022; 24(6): 435

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu Y, Yi Z, Li J, Wei Y, Feng R, Liu J, Huang J, Chen Y, Wang X, Sun J, Yin X, Li Y, Wan J, Zhang L, Huang J, Du H, Wang X, Li Q, Ren G, Li H. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts. Theranostics 2022; 12(10): 4564–4580

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng J, Sridhar S, Siefker-Radtke AO, Selvarajah S, Jiang DM. Targeting the FGFR pathway in urothelial carcinoma: the future is now. Curr Treat Options Oncol 2022; 23(9): 1269–1287

    PubMed  Google Scholar 

  39. Krull JE, Wenzl K, Hartert KT, Manske MK, Sarangi V, Maurer MJ, Larson MC, Nowakowski GS, Ansell SM, McPhail E, Habermann TM, Link BK, King RL, Cerhan JR, Novak AJ. Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer J 2020; 10(11): 117

    PubMed  PubMed Central  Google Scholar 

  40. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, Rosenthal A, Wang H, Qu P, Hoering A, Samur M, Towfic F, Ortiz M, Flynt E, Yu Z, Yang Z, Rozelle D, Obenauer J, Trotter M, Auclair D, Keats J, Bolli N, Fulciniti M, Szalat R, Moreau P, Durie B, Stewart AK, Goldschmidt H, Raab MS, Einsele H, Sonneveld P, San Miguel J, Lonial S, Jackson GH, Anderson KC, Avet-Loiseau H, Munshi N, Thakurta A, Morgan GJ. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 2018; 132(6): 587–597

    CAS  PubMed  PubMed Central  Google Scholar 

  41. An HW, Kim SY, Kwon JW, Seok SH, Woo SH, Kim DY, Park JW. In vivo CRISPR-Cas9 knockout screening using quantitative PCR identifies thymosin beta-4 X-linked that promotes diffuse-type gastric cancer metastasis. Mol Carcinog 2021; 60(9): 597–606

    CAS  PubMed  Google Scholar 

  42. Chu Y, You M, Zhang J, Gao G, Han R, Luo W, Liu T, Zuo J, Wang F. Adipose-derived mesenchymal stem cells enhance ovarian cancer growth and metastasis by increasing thymosin beta 4X-linked expression. Stem Cells Int 2019; 2019: 9037197

    PubMed  PubMed Central  Google Scholar 

  43. Khodabakhshi AH, Morin RD, Fejes AP, Mungall AJ, Mungall KL, Bolger-Munro M, Johnson NA, Connors JM, Gascoyne RD, Marra MA, Birol I, Jones SJM. Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 2012; 3(11): 1308–1319

    PubMed  PubMed Central  Google Scholar 

  44. Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: beyond growth control. J Cell Physiol 2019; 234(5): 5379–5389

    CAS  PubMed  Google Scholar 

  45. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res 2009; 7(12): 1893–1901

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hodkinson BP, Schaffer M, Brody JD, Jurczak W, Carpio C, Ben-Yehuda D, Avivi I, Forslund A, Özcan M, Alvarez J, Ceulemans R, Fourneau N, Younes A, Balasubramanian S. Biomarkers of response to ibrutinib plus nivolumab in relapsed diffuse large B-cell lymphoma, follicular lymphoma, or Richter’s transformation. Transl Oncol 2021; 14(1): 100977

    CAS  PubMed  Google Scholar 

  47. Rohde M, Bonn BR, Zimmermann M, Lange J, Möricke A, Klapper W, Oschlies I, Szczepanowski M, Nagel I, Schrappe M; MMML-MYC-SYS Project; ICGC MMML-Seq Project; Loeffler M, Siebert R, Reiter A, Burkhardt B. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Münster protocols. Haematologica 2017; 102(6): 1091–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Garcia D, Navarro A, Valdés-Mas R, Clot G, Gutiérrez-Abril J, Prieto M, Ribera-Cortada I, Woroniecka R, Rymkiewicz G, Bens S, de Leval L, Rosenwald A, Ferry JA, Hsi ED, Fu K, Delabie J, Weisenburger D, de Jong D, Climent F, O’Connor SJ, Swerdlow SH, Torrents D, Beltran S, Espinet B, González-Farré B, Veloza L, Costa D, Matutes E, Siebert R, Ott G, Quintanilla-Martinez L, Jaffe ES, López-Otín C, Salaverria I, Puente XS, Campo E, Beà S. CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1 mantle cell lymphoma. Blood 2019; 133(9): 940–951

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer 2018; 17(1): 164

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, Qi J, Rahl PB, Sun HH, Yeda KT, Doench JG, Reichert E, Kung AL, Rodig SJ, Young RA, Shipp MA, Bradner JE. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 2013; 24(6): 777–790

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsukamoto T, Nakahata S, Sato R, Kanai A, Nakano M, Chinen Y, Maegawa-Matsui S, Matsumura-Kimoto Y, Takimoto-Shimomura T, Mizuno Y, Kuwahara-Ota S, Kawaji Y, Taniwaki M, Inaba T, Tashiro K, Morishita K, Kuroda J. BRD4-regulated molecular targets in mantle cell lymphoma: insights into targeted therapeutic approach. Cancer Genomics Proteomics 2020; 17(1): 77–89

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chung NG, Kim MS, Yoo NJ, Lee SH. Somatic mutation of STAG2, an aneuploidy-related gene, is rare in acute leukemias. Leuk Lymphoma 2012; 53(6): 1234–1235

    CAS  PubMed  Google Scholar 

  53. Hashemi Zonouz T, Abdulbaki R, Bandyopadhyay BC, Nava VE. Novel mutations in a lethal case of lymphomatous adult T cell lymphoma with cryptic myocardial involvement. Curr Oncol 2021; 28(1): 818–824

    PubMed  PubMed Central  Google Scholar 

  54. Serizawa M, Yokota T, Hosokawa A, Kusafuka K, Sugiyama T, Tsubosa Y, Yasui H, Nakajima T, Koh Y. The efficacy of uracil DNA glycosylase pretreatment in amplicon-based massively parallel sequencing with DNA extracted from archived formalin-fixed paraffin-embedded esophageal cancer tissues. Cancer Genet 2015; 208(9): 415–427

    CAS  PubMed  Google Scholar 

  55. Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, Ueda H, Yasuda T, Yamaguchi H, Lee J, Shishido-Hara Y, Sasaki A, Shirahata M, Mishima K, Ichimura K, Mukasa A, Narita Y, Saito N, Aburatani H, Nishikawa R, Nagane M, Mano H. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol 2016; 131(6): 865–875

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shanghai Yuanqi Biomedical Technology Co. Ltd. (Shanghai, China) for the bioinformatics analysis. This study was supported by funds from the Translational Research Grant of National Clinical Research Center for Hematologic Disease (No. 2020ZKZC01), the National Natural Science Foundation of China (Nos. 81830006, 82170219, and 81800188) and the Lymphoma Research Fund of China Anti-Cancer Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baizhou Li or Wenbin Qian.

Ethics declarations

Xianggui Yuan, Teng Yu, Jianzhi Zhao, Huawei Jiang, Yuanyuan Hao, Wen Lei, Yun Liang, Baizhou Li, and Wenbin Qian declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Supplemental materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Yu, T., Zhao, J. et al. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front. Med. 17, 889–906 (2023). https://doi.org/10.1007/s11684-023-0994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-0994-x

Keywords

Navigation