Skip to main content

Advertisement

Log in

ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin SJS, Bai L, Haileselassie Y, Garay G, Yun C, Becker L, Streett SE, Sinha SR, Habtezion A. Mass cytometry reveals systemic and local immune signatures that distinguish inflammatory bowel diseases. Nat Commun 2019; 10(1): 2686–2699

    PubMed  PubMed Central  Google Scholar 

  2. Zhou J, Huang S, Wang Z, Huang J, Xu L, Tang X, Wan YY, Li QJ, Symonds ALJ, Long H, Zhu B. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun 2019; 10(1): 2427–2437

    PubMed  PubMed Central  Google Scholar 

  3. Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol 2016; 11(1): 127–148

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Danese S, Fiocchi C. Etiopathogenesis of inflammatory bowel diseases. World J Gastroenterol 2006; 12(30): 4807–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014; 20(1): 91–99

    PubMed  PubMed Central  Google Scholar 

  6. Bernstein CN. Treatment of IBD: where we are and where we are going. Am J Gastroenterol 2015; 110(1): 114–126

    PubMed  Google Scholar 

  7. Targownik LE, Bernstein CN. Infectious and malignant complications of TNF inhibitor therapy in IBD. Am J Gastroenterol 2013; 108(12): 1835–1842, quiz 1843

    CAS  PubMed  Google Scholar 

  8. Stappenbeck TS, Rioux JD, Mizoguchi A, Saitoh T, Huett A, Darfeuille-Michaud A, Wileman T, Mizushima N, Carding S, Akira S, Parkes M, Xavier RJ. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 2011; 7(4): 355–374

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Meddings JB, Sutherland LR, May GR. Intestinal permeability in patients with Crohn’s disease. Gut 1994; 35(11): 1675–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL. Tight junctions are membrane microdomains. J Cell Sci 2000; 113(10): 1771–1781

    CAS  PubMed  Google Scholar 

  11. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124(1): 3–20, quiz 21–22

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 1997; 273(4): C1378–C1385

    CAS  PubMed  Google Scholar 

  13. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140(6): 859–870

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): R79

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012; 9(4): 219–230

    CAS  PubMed  Google Scholar 

  16. Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O’Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC, O’Connell PR. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 2015; 64(10): 1553–1561

    CAS  PubMed  Google Scholar 

  17. Wang M, Molin G, Ahrné S, Adawi D, Jeppsson B. High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes. Dig Dis Sci 2007; 52(3): 620–627

    CAS  PubMed  Google Scholar 

  18. Singh SB, Lin HC. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 2015; 3(4): 866–889

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Szabo C, Hellmich MR. Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle 2013; 12(18): 2915–2916

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burguera EF, Meijide-Failde R, Blanco FJ. Hydrogen sulfide and inflammatory joint diseases. Curr Drug Targets 2017; 18(14): 1641–1652

    CAS  PubMed  Google Scholar 

  21. Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E, Santucci L, Cirino G, Wallace JL. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 2007; 150(8): 996–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M. Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 2017; 20(2): 182–189

    CAS  PubMed  Google Scholar 

  23. Miao X, Meng X, Wu G, Ju Z, Zhang HH, Hu S, Xu GY. Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 2014; 10: 9

    PubMed  PubMed Central  Google Scholar 

  24. Ahmad A, Szabo C. Both the H2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 2016; 113 (Pt A): 348–355

    CAS  PubMed  Google Scholar 

  25. Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY, Liu YJ, Wang CNH. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem 2016; 40(6): 1603–1612

    CAS  PubMed  Google Scholar 

  26. Bátai IZ, Sár CP, Horváth Á, Borbély É, Bölcskei K, Kemény Á, Sándor Z, Nemes B, Helyes Z, Perkecz A, Mócsai A, Pozsgai G, Pintér E. TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis. Front Pharmacol 2019; 10(10): 964

    PubMed  PubMed Central  Google Scholar 

  27. Cai F, Xu H, Cao N, Zhang X, Liu J, Lu Y, Chen J, Yang Y, Cheng J, Hua ZC, Zhuang H. ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis 2020; 11(1): 33–47

    CAS  PubMed  PubMed Central  Google Scholar 

  28. De Long MJ, Dolan P, Santamaria AB, Bueding E. 1,2-Dithiol-3-thione analogs: effects on NAD(P)H: quinone reductase and glutathione levels in murine hepatoma cells. Carcinogenesis 1986; 7(6): 977–980

    CAS  PubMed  Google Scholar 

  29. Zhang Y, Munday R. Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther 2008; 7(11): 3470–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lam S, MacAulay C, Le Riche JC, Dyachkova Y, Coldman A, Guillaud M, Hawk E, Christen MO, Gazdar AF. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J Natl Cancer Inst 2002; 94(13): 1001–1009

    CAS  PubMed  Google Scholar 

  31. Reddy BS, Rao CV, Rivenson A, Kelloff G. Chemoprevention of colon carcinogenesis by organosulfur compounds. Cancer Res 1993; 53(15): 3493–3498

    CAS  PubMed  Google Scholar 

  32. Chegaev K, Rolando B, Cortese D, Gazzano E, Buondonno I, Lazzarato L, Fanelli M, Hattinger CM, Serra M, Riganti C, Fruttero R, Ghigo D, Gasco A. H2S-donating doxorubicins may overcome cardiotoxicity and multidrug resistance. J Med Chem 2016; 59(10): 4881–4889

    CAS  PubMed  Google Scholar 

  33. Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, Du H, Alkayed NJ, Liu CF, Cheng J. Hydrogen sulfide protects blood-brain barrier integrity following cerebral ischemia. J Neurochem 2014; 129(5): 827–838

    CAS  PubMed  Google Scholar 

  34. Zhou X, Cao Y, Ao G, Hu L, Liu H, Wu J, Wang X, Jin M, Zheng S, Zhen X, Alkayed NJ, Jia J, Cheng J. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 2014; 21(12): 1741–1758

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T, Omatsu T, Handa O, Ichikawa H, Ueda H, Yoshikawa T. Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2011; 56(5): 1379–1386

    CAS  PubMed  Google Scholar 

  36. Meir M, Burkard N, Ungewiß H, Diefenbacher M, Flemming S, Kannapin F, Germer CT, Schweinlin M, Metzger M, Waschke J, Schlegel N. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 2019; 129(7): 2824–2840

    PubMed  PubMed Central  Google Scholar 

  37. Leonard M, Creed E, Brayden D, Baird AW. Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport. Pharm Res 2000; 17(10): 1181–1188

    CAS  PubMed  Google Scholar 

  38. Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 2016; 151(4): 733–746.e12

    CAS  PubMed  Google Scholar 

  39. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4516–4522

    CAS  PubMed  Google Scholar 

  40. Fordham RP, Sansom OJ. Colon contradictions: NF-κB signaling in intestinal tumorigenesis. J Exp Med 2015; 212(13): 2185

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170(2): 191–203

    CAS  PubMed  Google Scholar 

  42. Howden CW, Gillanders I, Morris AJ, Duncan A, Danesh B, Russell RI. Intestinal permeability in patients with Crohn’s disease and their first-degree relatives. Am J Gastroenterol 1994; 89(8): 1175–1176

    CAS  PubMed  Google Scholar 

  43. Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 2013; 8(5): e61944

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li C, Zhao Y, Cheng J, Guo J, Zhang Q, Zhang X, Ren J, Wang F, Huang J, Hu H, Wang R, Zhang J. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv Sci (Weinh) 2019; 6(18): 1900610

    CAS  PubMed  Google Scholar 

  45. Guo FF, Yu TC, Hong J, Fang JY. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. Front Physiol 2016; 7: 156

    PubMed  PubMed Central  Google Scholar 

  46. Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007; 132(1): 261–271

    CAS  PubMed  Google Scholar 

  47. Liu L, Cui J, Song CJ, Bian JS, Sparatore A, Soldato PD, Wang XY, Yan CDH. H2S-releasing aspirin protects against aspirin-induced gastric injury via reducing oxidative stress. PLoS One 2012; 7(9): e46301

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marutani E, Kosugi S, Tokuda K, Khatri A, Nguyen R, Atochin DN, Kida K, Van Leyen K, Arai K, Ichinose F. A novel hydrogen sulfide-releasing N-methyl-D-aspartate receptor antagonist prevents ischemic neuronal death. J Biol Chem 2012; 287(38): 32124–32135

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 2012; 45(1): 13–24

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Y, Zhu C, Yang Z, Chen J, He Y, Jiao Y, He W, Qiu L, Cen J, Guo Z. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. Angew Chem Int Ed Engl 2013; 52(6): 1688–1691

    CAS  PubMed  Google Scholar 

  51. Nam B, Lee W, Sarkar S, Kim JH, Bhise A, Park H, Kim JY, Huynh PT, Rajkumar S, Lee K, Ha YS, Cho SH, Lim JE, Kim KW, Lee KC, Suk K, Yoo J. In vivo detection of hydrogen sulfide in the brain of live mouse: application in neuroinflammation models. Eur J Nucl Med Mol Imaging 2022; 49(12): 4073–4087

    CAS  PubMed  Google Scholar 

  52. Renga B. Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm Allergy Drug Targets 2011; 10(2): 85–91

    CAS  PubMed  Google Scholar 

  53. Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science 2011; 334(6058): 986–990

    CAS  PubMed  Google Scholar 

  54. Zhang J, Zhang Q, Wang Y, Li J, Bai Z, Zhao Q, Wang Z, He D, Zhang J, Chen Y. Toxicities and beneficial protection of H2S donors based on nonsteroidal anti-inflammatory drugs. MedChemComm 2019; 10(5): 742–756

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghosh S, Panaccione R. Anti-adhesion molecule therapy for inflammatory bowel disease. Therap Adv Gastroenterol 2010; 3(4): 239–258

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Velikova G, Banks RE, Gearing A, Hemingway I, Forbes MA, Preston SR, Jones M, Wyatt J, Miller K, Ward U, Al-Maskatti J, Singh SM, Ambrose NS, Primrose JN, Selby PJ. Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer 1997; 76(11): 1398–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF. Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 2013; 25(11): 2255–2262

    CAS  PubMed  Google Scholar 

  58. Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 2018; 182: 289–298

    CAS  PubMed  Google Scholar 

  59. Egge N, Arneaud SLB, Wales P, Mihelakis M, McClendon J, Fonseca RS, Savelle C, Gonzalez I, Ghorashi A, Yadavalli S, Lehman WJ, Mirzaei H, Douglas PM. Age-onset phosphorylation of a minor actin variant promotes intestinal barrier dysfunction. Dev Cell 2019; 51(5): 587–601.e7

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004; 84(3): 282–291

    CAS  PubMed  Google Scholar 

  61. Shi H, Yu Y, Lin D, Zheng P, Zhang P, Hu M, Wang Q, Pan W, Yang X, Hu T, Li Q, Tang R, Zhou F, Zheng K, Huang XF. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 2020; 8(1): 143

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, Nie Y, Li M, Zhi F, Liu S, Amir A, González A, Tripathi A, Chen M, Wu GD, Knight R, Zhou H, Chen Y. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 2018; 3(1): e00188–17

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shang L, Liu H, Yu H, Chen M, Yang T, Zeng X, Qiao S. Core altered microorganisms in colitis mouse model: a comprehensive time-point and fecal microbiota transplantation analysis. Antibiotics (Basel) 2021; 10(6): 643

    CAS  PubMed  Google Scholar 

  64. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus Alistipss: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 2020; 11: 906

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li AL, Ni WW, Zhang QM, Li Y, Zhang X, Wu HY, Du P, Hou JC, Zhang Y. Effect of cinnamon essential oil on gut microbiota in the mouse model of dextran sodium sulfate-induced colitis. Microbiol Immunol 2020; 64(1): 23–32

    CAS  PubMed  Google Scholar 

  66. Hu Y, Liu JP, Zhu Y, Lu NH. The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter 2016; 21(5): 428–440

    CAS  PubMed  Google Scholar 

  67. Wang H, Huang J, Ding Y, Zhou J, Gao G, Han H, Zhou J, Ke L, Rao P, Chen T, Zhang L. Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr 2022; 9: 821404

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Nos. 82130106 and 32250016), Nanjing Special Fund for Life and Health Science and Technology (No. 202110016), and Changzhou Municipal Department of Science and Technology (Nos. CZ20210010, CJ20210024, and CJ20220019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Cheng, Zichun Hua or Hongqin Zhuang.

Ethics declarations

Zhiqian Bi, Chen Jia, Xiaoyao Chang, Dangran Li, Yingying Yao, Fangfang Cai, Huangru Xu, Jian Cheng, Zichun Hua, Hongqin Zhuang declare that they have no conflicts of interest. Animal welfare and experimental procedures were performed in strict accordance with high standard animal welfare and other related ethical regulations approved by the Nanjing University Animal Care and Use Committee.

Supplemental information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Z., Chen, J., Chang, X. et al. ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis. Front. Med. 17, 972–992 (2023). https://doi.org/10.1007/s11684-023-0990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-0990-1

Keywords

Navigation