Skip to main content

Advertisement

SpringerLink
Mechanism of insulin resistance in obesity: a role of ATP
Download PDF
Download PDF
  • Review
  • Open Access
  • Published: 28 May 2021

Mechanism of insulin resistance in obesity: a role of ATP

  • Jianping Ye1 

Frontiers of Medicine volume 15, pages 372–382 (2021)Cite this article

  • 1957 Accesses

  • 10 Citations

  • 35 Altmetric

  • Metrics details

Abstract

Obesity increases the risk of type 2 diabetes through the induction of insulin resistance. The mechanism of insulin resistance has been extensively investigated for more than 60 years, but the essential pathogenic signal remains missing. Existing hypotheses include inflammation, mitochondrial dysfunction, hyperinsulinemia, hyperglucagonemia, glucotoxicity, and lipotoxicity. Drug discoveries based on these hypotheses are unsuccessful in the development of new medicines. In this review, multidisciplinary literature is integrated to evaluate ATP as a primary signal for insulin resistance. The ATP production is elevated in insulin-sensitive cells under obese conditions independent of energy demand, which we have named “mitochondrial overheating.” Overheating occurs because of substrate oversupply to mitochondria, leading to extra ATP production. The ATP overproduction contributes to the systemic insulin resistance through several mechanisms, such as inhibition of AMPK, induction of mTOR, hyperinsulinemia, hyperglucagonemia, and mitochondrial dysfunction. Insulin resistance represents a feedback regulation of energy oversupply in cells to control mitochondrial overloading by substrates. Insulin resistance cuts down the substrate uptake to attenuate mitochondrial overloading. The downregulation of the mitochondrial overloading by medicines, bypass surgeries, calorie restriction, and physical exercise leads to insulin sensitization in patients. Therefore, ATP may represent the primary signal of insulin resistance in the cellular protective response to the substrate oversupply. The prevention of ATP overproduction represents a key strategy for insulin sensitization.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013; 7(1): 14–24

    PubMed  PubMed Central  Google Scholar 

  2. Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 2020; 35: 100937

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019; 576(7785): 51–60

    CAS  PubMed  Google Scholar 

  4. Nikolic I, Leiva M, Sabio G. The role of stress kinases in metabolic disease. Nat Rev Endocrinol 2020; 16(12): 697–716

    CAS  PubMed  Google Scholar 

  5. Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell 2018; 172(1–2): 22–40

    CAS  PubMed  Google Scholar 

  6. Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020; 583(7814): 122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Ye J. Mitochondrial inhibitor as a new class of insulin sensitizer. Acta Pharm Sin B 2012; 2(4): 341–349

    CAS  PubMed  Google Scholar 

  8. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 281(7285): 785–789

    Google Scholar 

  9. Hernández EA, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest 2017; 127 (2): 695–708

    PubMed  PubMed Central  Google Scholar 

  10. Lee JH, Zhang Y, Zhao Z, Ye X, Zhang X, Wang H, Ye J. Intracellular ATP in balance of pro- and anti-inflammatory cytokines in adipose tissue with and without tissue expansion. Int J Obes 2017; 41(4): 645–651

    CAS  Google Scholar 

  11. Zhang Y, Zhao Z, Ke B, Wan L, Wang H, Ye J. Induction of posttranslational modifications of mitochondrial proteins by ATP contributes to negative regulation of mitochondrial function. PLoS One 2016; 11(3): e0150454

    PubMed  PubMed Central  Google Scholar 

  12. Qian S, Ma L, Peng S, Xu Y, Wu K, Shen S, Zhang X, Sun Y, Ye J. ATP reduces mitochondrial MECR protein in liver of diet-induced obese mice in mechanism of insulin resistance. Biosci Rep 2020; 40(6): BSR20200665

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Le J, Zhang X, Jia W, Zhang Y, Luo J, Sun Y, Ye J. Regulation of microbiota-GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharm Sin B 2019; 9(4): 758–768

    PubMed  PubMed Central  Google Scholar 

  14. Sun Y, Jin C, Zhang X, Jia W, Le J, Ye J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr Diabetes 2018; 8(1): 53

    PubMed  PubMed Central  Google Scholar 

  15. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. Nutrient excess in AMPK downregulation and insulin resistance. J Endocrinol Diabetes Obes 2013; 1(1): 1008

    PubMed  PubMed Central  Google Scholar 

  16. Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123(7): 2764–2772

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 2017; 66 (6): 789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang P, Ren L, Zhi L, Yu Z, Lv F, Xu F, Peng W, Bai X, Cheng K, Quan L, Zhang X, Wang X, Zhang Y, Yang D, Hu X, Xiao RP. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol Cell 2021; 81(3): 629–637.e5

    CAS  PubMed  Google Scholar 

  19. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006; 3(6): 393–402

    CAS  PubMed  Google Scholar 

  20. Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014; 159(6): 1253–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45–56

    CAS  PubMed  Google Scholar 

  22. Qiao J, Chen C, Shangguan D, Mu X, Wang S, Jiang L, Qi L. Simultaneous monitoring of mitochondrial temperature and ATP fluctuation using fluorescent probes in living cells. Anal Chem 2018; 90(21): 12553–12558

    CAS  PubMed  Google Scholar 

  23. Wang L, Yuan L, Zeng X, Peng J, Ni Y, Er JC, Xu W, Agrawalla BK, Su D, Kim B, Chang YT. A multisite-binding switchable fluorescent probe for monitoring mitochondrial ATP level fluctuation in live cells. Angew Chem Int Ed Engl 2016; 55(5): 1773–1776

    CAS  PubMed  Google Scholar 

  24. Qian SN, Peng SQ, Zhang XY, Ye JP. Novel role of intracellular ATP in obesity pathology. Acta Physiol Sin (Sheng Li Xue Bao) 2020; 72(4): 532–538 (in Chinese)

    Google Scholar 

  25. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20(7): 745–754

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mollica MP, Iossa S, Liverini G, Soboll S. Stimulation of oxygen consumption following addition of lipid substrates in liver and skeletal muscle from rats fed a high-fat diet. Metabolism 1999; 48 (10): 1230–1235

    CAS  PubMed  Google Scholar 

  27. Català-Niell A, Estrany ME, Proenza AM, Gianotti M, Lladó I. Skeletal muscle and liver oxidative metabolism in response to a voluntary isocaloric intake of a high fat diet in male and female rats. Cell Physiol Biochem 2008; 22(1–4): 327–336

    PubMed  Google Scholar 

  28. Roesler A, Kazak L. UCP1-independent thermogenesis. Biochem J 2020; 477(3): 709–725

    CAS  PubMed  Google Scholar 

  29. Chiumello D, Gotti M, Vergani G. Paracetamol in fever in critically ill patients—an update. J Crit Care 2017; 38: 245–252

    CAS  PubMed  Google Scholar 

  30. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88 (3): 960–966

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97(12): 2859–2865

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010; 31(1): 25–51

    CAS  PubMed  Google Scholar 

  33. Muoio DM. Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta 2010; 1801(3): 281–288

    CAS  PubMed  Google Scholar 

  34. Hao Z, Mumphrey MB, Townsend RL, Morrison CD, Münzberg H, Ye J, Berthoud HR. Reprogramming of defended body weight after Roux-En-Y gastric bypass surgery in diet-induced obese mice. Obesity (Silver Spring) 2016; 24(3): 654–660

    CAS  Google Scholar 

  35. Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 2019; 70 (2): 711–724

    CAS  PubMed  Google Scholar 

  36. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57(5): 1414–1418

    CAS  PubMed  Google Scholar 

  38. Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148–E156

    CAS  PubMed  Google Scholar 

  39. Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, Spiegel DA, Shulman GI. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 2013; 18(5): 740–748

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 2015; 347(6227): 1253–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang H, Jin J, Duan Y, Xie Z, Li Y, Gao A, Gu M, Zhang X, Peng C, Xia C, Dong T, Li H, Yu L, Tang J, Yang F, Li J, Li J. Mitochondrial uncoupling coordinated with PDH activation safely ameliorates hyperglycemia via promoting glucose oxidation. Diabetes 2019; 68(12): 2197–2209

    CAS  PubMed  Google Scholar 

  42. Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 2018; 116: 106–114

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12(11): 633–645

    CAS  PubMed  Google Scholar 

  44. Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11: 637–645

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64(3): 663–672

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116

    CAS  PubMed  PubMed Central  Google Scholar 

  47. González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab 2020; 31(3): 472–492

    PubMed  Google Scholar 

  48. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018; 19(2): 121–135

    CAS  PubMed  Google Scholar 

  49. Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 2016; 26(3): 190–201

    CAS  PubMed  Google Scholar 

  50. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003; 111(1): 91–98

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 2014; 20(35): 5507–5509

    CAS  PubMed  Google Scholar 

  52. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384–387

    CAS  PubMed  Google Scholar 

  53. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49(5): 677–683

    CAS  PubMed  Google Scholar 

  54. Ye J. Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 2007; 7(1): 65–74

    CAS  PubMed  Google Scholar 

  55. Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 2008; 283(51): 35375–35382

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20 (3): 526–540

    CAS  PubMed  Google Scholar 

  58. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294 (5544): 1102–1105

    CAS  PubMed  Google Scholar 

  59. Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 2012; 61(1): 4–13

    CAS  PubMed  Google Scholar 

  60. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804–814

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Page MM, Johnson JD. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance. Trends Endocrinol Metab 2018; 29(6): 389–399

    CAS  PubMed  Google Scholar 

  62. Erion KA, Corkey BE. Hyperinsulinemia: a cause of obesity? Curr Obes Rep 2017; 6(2): 178–186

    PubMed  PubMed Central  Google Scholar 

  63. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 2008; 31(Suppl 2): S262–S268

    CAS  PubMed  Google Scholar 

  64. Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16(6): 723–737

    CAS  PubMed  Google Scholar 

  65. Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22(2): 142–158

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B, Klein S. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest 2020; 130(6): 3305–3314

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gray SL, Donald C, Jetha A, Covey SD, Kieffer TJ. Hyperinsu-linemia precedes insulin resistance in mice lacking pancreatic β-cell leptin signaling. Endocrinology 2010; 151(9): 4178–4186

    CAS  PubMed  Google Scholar 

  68. Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10(1): 189–231

    CAS  PubMed  Google Scholar 

  69. Hazama A, Hayashi S, Okada Y. Cell surface measurements of ATP release from single pancreatic β cells using a novel biosensor technique. Pflugers Arch 1998; 437(1): 31–35

    CAS  PubMed  Google Scholar 

  70. Hutton JC, Penn EJ, Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 1983; 210(2): 297–305

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Soberanes S, Misharin AV, Jairaman A, Morales-Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka RB, Meliton AY, Reyfman PA, Walter JM, Chen CI, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Antalek M, Abdala-Valencia H, Chiarella SE, Sun KA, Woods PS, Ghio AJ, Jain M, Perlman H, Ridge KM, Morimoto RI, Sznajder JI, Balch WE, Bhorade SM, Bharat A, Prakriya M, Chandel NS, Mutlu GM, Budinger GRS. Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis. Cell Metab 2019; 29(2): 335–347.e5

    CAS  PubMed  Google Scholar 

  72. Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1984–1990

    CAS  PubMed  Google Scholar 

  73. Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D, Van de Casteele M. Metformin-induced stimulation of AMP-activated protein kinase in β-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol 2004; 68(3): 409–416

    CAS  PubMed  Google Scholar 

  74. Carpentier J, Luyckx AS, Lefebvre PJ. Influence of metformin on arginine-induced glucagon secretion in human diabetes. Diabete Metab 1975; 1: 23–28

    CAS  PubMed  Google Scholar 

  75. Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS One 2014; 9(4): e95399

    PubMed  PubMed Central  Google Scholar 

  76. Lee YH, Wang MY, Yu XX, Unger RH. Glucagon is the key factor in the development of diabetes. Diabetologia 2016; 59(7): 1372–1375

    CAS  PubMed  Google Scholar 

  77. Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 2020; 69(4): 532–541

    CAS  PubMed  Google Scholar 

  78. Dunning BE, Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007; 28(3): 253–283

    CAS  PubMed  Google Scholar 

  79. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494(7436): 256–260

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pettus JH, D’Alessio D, Frias JP, Vajda EG, Pipkin JD, Rosenstock J, Williamson G, Zangmeister MA, Zhi L, Marschke KB. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: a 12-week doseranging study. Diabetes Care 2020; 43(1): 161–168

    CAS  PubMed  Google Scholar 

  81. Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 2012; 153 (3): 1039–1048

    CAS  PubMed  Google Scholar 

  82. Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring β-cells. Diabetes 2004; 53(4): 1038–1045

    CAS  PubMed  Google Scholar 

  83. Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO. Glutamate is a positive autocrine signal for glucagon release. Cell Metab 2008; 7(6): 545–554

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Elliott AD, Ustione A, Piston DW. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am J Physiol Endocrinol Metab 2015; 308 (2): E130–E143

    CAS  PubMed  Google Scholar 

  85. Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S. Paracrine control of α-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun 2020; 11(1): 1896

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23(7): 859–868

    CAS  PubMed  Google Scholar 

  87. Simonson M, Boirie Y, Guillet C. Protein, amino acids and obesity treatment. Rev Endocr Metab Disord 2020; 21(3): 341–353

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Burnstock G, Gentile D. The involvement of purinergic signalling in obesity. Purinergic Signal 2018; 14(2): 97–108

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Antonioli L, Blandizzi C, Pacher P, Haskó G. The purinergic system as a pharmacological target for the treatment of immunemediated inflammatory diseases. Pharmacol Rev 2019; 71(3): 345–382

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Giacovazzo G, Fabbrizio P, Apolloni S, Coccurello R, Volonté C. Stimulation of P2X7 enhances whole body energy metabolism in mice. Front Cell Neurosci 2019; 13: 390

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun S, Xia S, Ji Y, Kersten S, Qi L. The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 2012; 61(6): 1471–1478

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An update on P2Y13 receptor signalling and function. Adv Exp Med Biol 2017; 1051: 139–168

    PubMed  Google Scholar 

  93. Cao X, Ye X, Zhang S, Wang L, Xu Y, Peng S, Zhou Y, Peng Y, Li J, Zhang X, Han X, Huang H, Jia W, Ye J. ADP induces blood glucose through direct and indirect mechanisms in promotion of hepatic gluconeogenesis by elevation of NADH. Front Endocrinol 2021; 12: 663530

    Google Scholar 

  94. Amisten S, Meidute-Abaraviciene S, Tan C, Olde B, Lundquist I, Salehi A, Erlinge D. ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia 2010; 53 (9): 1927–1934

    CAS  PubMed  Google Scholar 

  95. Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W, Kahn BB, Robson SC. Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 2008; 57(9): 2311–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jacques FJ, Silva TM, da Silva FE, Ornelas IM, Ventura ALM. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture. Cell Signal 2017; 35: 95–106

    CAS  PubMed  Google Scholar 

  97. Blom D, Yamin TT, Champy MF, Selloum M, Bedu E, Carballo-Jane E, Gerckens L, Luell S, Meurer R, Chin J, Mudgett J, Puig O. Altered lipoprotein metabolism in P2Y13 knockout mice. Biochim Biophys Acta 2010; 1801(12): 1349–1360

    CAS  PubMed  Google Scholar 

  98. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300(5622): 1140–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007; 5(2): 151–156

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440(7086): 944–948

    CAS  PubMed  Google Scholar 

  101. Nair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo ZK, Sreekumar R, Irving BA. Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 2008; 57(5): 1166–1175

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233, China

    Jianping Ye

Authors
  1. Jianping Ye
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jianping Ye.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, J. Mechanism of insulin resistance in obesity: a role of ATP. Front. Med. 15, 372–382 (2021). https://doi.org/10.1007/s11684-021-0862-5

Download citation

  • Received: 09 January 2021

  • Accepted: 25 April 2021

  • Published: 28 May 2021

  • Issue Date: June 2021

  • DOI: https://doi.org/10.1007/s11684-021-0862-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • type 2 diabetes
  • energy expenditure
  • mitochondria
  • hyperinsulinemia
  • hyperglucagonemia
  • AMPK
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.