Skip to main content
Log in

Bioactive hyaluronic acid fragments inhibit lipopolysaccharide-induced inflammatory responses via the Toll-like receptor 4 signaling pathway

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The high- and the low-molecular weight hyaluronic acids (HMW-HA and LMW-HA, respectively) showed different biological activities in inflammation. However, the role of LMW-HA in inflammatory response is controversial. In this study, we aimed to investigate the effect of bioactive hyaluronan (B-HA) on lipopolysaccharide (LPS)-induced inflammatory responses in human macrophages and mice. B-HA was produced from HA treated with glycosylated recombinant human hyaluronidase PH20. Human THP-1 cells were induced to differentiate into macrophages. THP-1-derived macrophages were treated with B-HA, LPS, or B-HA + LPS. The mRNA expression and the production of inflammatory cytokines were determined using quantitative real-time PCR and enzyme-linked immunosorbent assay. The phosphorylation levels of proteins in the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and IRF-3 signaling pathways were measured using Western blot. The in vivo efficacy of B-HA was assessed in a mouse model of LPS-induced inflammation. Results showed that B-HA inhibited the expression of TNF-α, IL-6, IL-1, and IFN-β, and enhanced the expression of the antiinflammatory cytokine IL-10 in LPS-induced inflammatory responses in THP-1-derived macrophages and in vivo. B-HA significantly suppressed the phosphorylation of the TLR4 signaling pathway proteins p65, IKKα/β, IκBα, JNK1/2, ERK1/2, p38, and IRF-3. In conclusion, our results demonstrated that the B-HA attenuated the LPS-stimulated inflammatory response by inhibiting the activation of the TLR4 signaling pathway. B-HA could be a potential anti-inflammatory drug in the treatment of inflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 2000; 12(5): 581–586

    CAS  PubMed  Google Scholar 

  2. Moore AR. Hyaluronan—a review of the recent patent literature. IDrugs 2000; 3(2): 198–201

    CAS  PubMed  Google Scholar 

  3. Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97: 186–203

    CAS  PubMed  Google Scholar 

  4. Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, Cowman MK, de la Motte CA. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem 2013; 288(40): 29090–29104

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91(1): 221–264

    CAS  PubMed  Google Scholar 

  6. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 2002; 21(1): 25–29

    CAS  PubMed  Google Scholar 

  7. Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology. Am J Physiol Lung Cell Mol Physiol 2011; 301(2): L137–L147

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM, Gallo RL. NLRP3/ cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 2009; 284(19): 12762–12771

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A. Small hyaluronan oligosaccharides induce inflammation by engaging both Toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol 2010; 80(4): 480–490

    CAS  PubMed  Google Scholar 

  10. Kim MY, Muto J, Gallo RL. Hyaluronic acid oligosaccharides suppress TLR3-dependent cytokine expression in a TLR4-dependent manner. PLoS One 2013; 8(8): e72421

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawana H, Karaki H, Higashi M, Miyazaki M, Hilberg F, Kitagawa M, Harigaya K. CD44 suppresses TLR-mediated inflammation. J Immunol 2008; 180(6): 4235–4245

    CAS  PubMed  Google Scholar 

  12. Kang DW, Jadin L, Nekoroski T, Drake FH, Zepeda ML. Recombinant human hyaluronidase PH20 (rHuPH20) facilitates subcutaneous infusions of large volumes of immunoglobulin in a swine model. Drug Deliv Transl Res 2012; 2(4): 254–264

    CAS  PubMed  Google Scholar 

  13. Black KE, Collins SL, Hagan RS, Hamblin MJ, Chan-Li Y, Hallowell RW, Powell JD, Horton MR. Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway. J Inflamm (Lond) 2013; 10(1): 23

    CAS  Google Scholar 

  14. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 2006; 177(2): 1272–1281

    CAS  PubMed  Google Scholar 

  15. Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H, Golenbock D, Beutler B, Gallo RL. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem 2007; 282(25): 18265–18275

    CAS  PubMed  Google Scholar 

  16. Kouvidi K, Berdiaki A, Nikitovic D, Katonis P, Afratis N, Hascall VC, Karamanos NK, Tzanakakis GN. Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011; 286(44): 38509–38520

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860–867

    CAS  PubMed  Google Scholar 

  18. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340(2): 115–126

    CAS  PubMed  Google Scholar 

  19. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases. Semin Immunol 2015; 27(4): 249–256

    CAS  PubMed  Google Scholar 

  21. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J Pathol 2008; 214(2): 161–178

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285(5425): 248–251

    CAS  PubMed  Google Scholar 

  23. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5(4): 331–342

    CAS  PubMed  Google Scholar 

  24. Akhter N, Hasan A, Shenouda S, Wilson A, Kochumon S, Ali S, Tuomilehto J, Sindhu S, Ahmad R. TLR4/MyD88-mediated CCL2 production by lipopolysaccharide (endotoxin): implications for metabolic inflammation. J Diabetes Metab Disord 2018; 17(1): 77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277(7): 4589–4592

    CAS  PubMed  Google Scholar 

  26. Liang J, Jiang D, Griffith J, Yu S, Fan J, Zhao X, Bucala R, Noble PW. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J Immunol 2007; 178(4): 2469–2475

    CAS  PubMed  Google Scholar 

  27. Terabe K, Ohashi Y, Tsuchiya S, Ishizuka S, Knudson CB, Knudson W. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J Biol Chem 2019; 294(47): 17799–17817

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Z, Potts EN, Piantadosi CA, Foster WM, Hollingsworth JW. Hyaluronan fragments contribute to the ozone-primed immune response to lipopolysaccharide. J Immunol 2010; 185(11): 6891–6898

    CAS  PubMed  Google Scholar 

  29. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 2015; 74(2): 181–189

    CAS  PubMed  Google Scholar 

  30. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001; 13(2): 85–94

    CAS  PubMed  Google Scholar 

  31. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7(5): 353–364

    PubMed  Google Scholar 

  32. Thada S, Valluri VL, Gaddam SL. Influence of Toll-like receptor gene polymorphisms to tuberculosis susceptibility in humans. Scand J Immunol 2013; 78(3): 221–229

    CAS  PubMed  Google Scholar 

  33. Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007; 56(1): 45–50

    CAS  PubMed  Google Scholar 

  34. Wu Y, Zhu X, Li N, Chen T, Yang M, Yao M, Liu X, Jin B, Wang X, Cao X. CMRF-35-like molecule 3 preferentially promotes TLR9-triggered proinflammatory cytokine production in macrophages by enhancing TNF receptor-associated factor 6 ubiquitination. J Immunol 2011; 187(9): 4881–4889

    CAS  PubMed  Google Scholar 

  35. Kolar SL, Kyme P, Tseng CW, Soliman A, Kaplan A, Liang J, Nizet V, Jiang D, Murali R, Arditi M, Underhill DM, Liu GY. Group B streptococcus evades host immunity by degrading hyaluronan. Cell Host Microbe 2015; 18(6): 694–704

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428–435

    CAS  PubMed  Google Scholar 

  37. Hasan A, Akhter N, Al-Roub A, Thomas R, Kochumon S, Wilson A, Koshy M, Al-Ozairi E, Al-Mulla F, Ahmad R. TNF-α in combination with palmitate enhances IL-8 production via the MyD88-independent TLR4 signaling pathway: potential relevance to metabolic inflammation. Int J Mol Sci 2019; 20(17): E4112

    PubMed  Google Scholar 

  38. Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med 2009; 37(1): 291–304

    CAS  PubMed  Google Scholar 

  39. Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C. Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun 2012; 18(4): 648–660

    CAS  PubMed  Google Scholar 

  40. Sindhu S, Akhter N, Kochumon S, Thomas R, Wilson A, Shenouda S, Tuomilehto J, Ahmad R. Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: association with ROS-mediated oxidative stress. Cell Physiol Biochem 2018; 45(2): 572–590

    CAS  PubMed  Google Scholar 

  41. Lacatus M. Innate immunity in surgical patients. Chirurgia (Bucur) 2013; 108(1): 18–25

    CAS  Google Scholar 

  42. Cai B, Wang M, Zhu X, Xu J, Zheng W, Zhang Y, Zheng F, Feng Z, Zhu J. The Fab fragment of a humanized anti-Toll like receptor 4 (TLR4) monoclonal antibody reduces the lipopolysaccharide response via TLR4 in mouse macrophage. Int J Mol Sci 2015; 16(10): 25502–25515

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kochumon S, Al-Rashed F, Abu-Farha M, Devarajan S, Tuomilehto J, Ahmad R. Adipose tissue expression of CCL19 chemokine is positively associated with insulin resistance. Diabetes Metab Res Rev 2019; 35(2): e3087

    PubMed  Google Scholar 

  44. Sindhu S, Kochumon S, Shenouda S, Wilson A, Al-Mulla F, Ahmad R. The cooperative induction of CCL4 in human monocytic cells by TNF-α and palmitate requires MyD88 and involves MAPK/NF-κB signaling pathways. Int J Mol Sci 2019; 20(18): E4658

    PubMed  Google Scholar 

  45. Kochumon S, Wilson A, Chandy B, Shenouda S, Tuomilehto J, Sindhu S, Ahmad R. Palmitate activates CCL4 expression in human monocytic cells via TLR4/MyD88 dependent activation of NF-κB/ MAPK/ PI3K signaling systems. Cell Physiol Biochem 2018; 46(3): 953–964

    CAS  PubMed  Google Scholar 

  46. Sindhu S, Al-Roub A, Koshy M, Thomas R, Ahmad R. Palmitate-induced MMP-9 expression in the human monocytic cells is mediated through the TLR4-MyD88 dependent mechanism. Cell Physiol Biochem 2016; 39(3): 889–900

    CAS  PubMed  Google Scholar 

  47. Ahmad R, Al-Roub A, Kochumon S, Akther N, Thomas R, Kumari M, Koshy MS, Tiss A, Hannun YA, Tuomilehto J, Sindhu S, Rosen ED. The synergy between palmitate and TNF-α for CCL2 production is dependent on the TRIF/IRF3 pathway: implications for metabolic inflammation. J Immunol 2018; 200(10): 3599–3611

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kawai T, Akira S. TLR signaling. Semin Immunol 2007; 19(1): 24–32

    CAS  PubMed  Google Scholar 

  49. Xu C, Chen G, Yang W, Xu Y, Xu Y, Huang X, Liu J, Feng Y, Xu Y, Liu B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int Immunopharmacol 2015; 28(2): 1050–1058

    CAS  PubMed  Google Scholar 

  50. Akashi S, Saitoh S, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y, Kusumoto Y, Fukase K, Kusumoto S, Adachi Y, Kosugi A, Miyake K. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med 2003; 198(7): 1035–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 2010; 10(3): 170–181

    CAS  PubMed  Google Scholar 

  52. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19(1): 683–765

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage for English language editing and Publication Support. This work was supported by grants from the Chinese National Twelfth Five-year Plan Project (No. 2013ZX09J-13110-05B, MW) and the Social Development Project of Jiangsu Province (No. BE2015651, JZ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Zhu or Maorong Wang.

Additional information

Compliance with ethics guidelines

Na You, Sasa Chu, Binggang Cai, Youfang Gao, Mizhou Hui, Jin Zhu, and Maorong Wang declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, N., Chu, S., Cai, B. et al. Bioactive hyaluronic acid fragments inhibit lipopolysaccharide-induced inflammatory responses via the Toll-like receptor 4 signaling pathway. Front. Med. 15, 292–301 (2021). https://doi.org/10.1007/s11684-020-0806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-020-0806-5

Keywords

Navigation