Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Frontiers of Medicine
  3. Article
Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies
Download PDF
Download PDF
  • Review
  • Published: 21 April 2020

Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies

  • Guangbiao Zhou1,
  • Saijuan Chen2 &
  • Zhu Chen2 

Frontiers of Medicine volume 14, pages 117–125 (2020)Cite this article

Circuit is open

Abstract

Since the outbreak of the COVID-19 pandemic in early December 2019, 81 174 confirmed cases and 3242 deaths have been reported in China as of March 19, 2020. The Chinese people and government have contributed huge efforts to combat this disease, resulting in significant improvement of the situation, with 58 new cases (34 were imported cases) and 11 new deaths reported on March 19, 2020. However, as of March 19, 2020, the COVID-19 pandemic continues to develop in 167 countries/territories outside of China, and 128 665 confirmed cases and 5536 deaths have been reported, with 16 498 new cases and 817 new deaths occurring in last 24 hours. Therefore, the world should work together to fight against this pandemic. Here, we review the recent advances in COVID-19, including the insights in the virus, the responses of the host cells, the cytokine release syndrome, and the therapeutic approaches to inhibit the virus and alleviate the cytokine storm. By sharing knowledge and deepening our understanding of the virus and the disease pathogenesis, we believe that the community can efficiently develop effective vaccines and drugs, and the mankind will eventually win this battle against this pandemic.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 2020 Mar 4. [Epub ahead of print] doi: 10.1126/science.abb2762

    Book  Google Scholar 

  2. World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf (accessed February 27, 2020)

    Google Scholar 

  3. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report-59. March 19, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200319-sitrep-59-covid-19.pdf?sfvrsn=c3dcdef9_2 (accessed March 20, 2020)

    Google Scholar 

  4. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report-37. February 26, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200226-sitrep-37-covid-19.pdf?sfvrsn=2146841e_2 (accessed February 27, 2020)

    Google Scholar 

  5. Zhang Y, Cao D. Wuhan to close its largest makeshift hospital. China Daily. March 7, 2020. https://www.chinadaily.com.cn/a/202003/07/WS5e63a721a31012821727d2a9.html (accessed March 8, 2020)

    Google Scholar 

  6. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. March 11, 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020 (accessed March 12, 2020)

    Google Scholar 

  7. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) — recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006–2011

    CAS  PubMed  Google Scholar 

  8. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020 Mar 3. [Epub ahead of print] doi:10.1093/nsr/nwaa036

    Google Scholar 

  10. Maclean OA, Orton R, Singer J, Robertson DL. Response to “On the origin and continuing evolution of SARS-CoV-2”. 2020. http://virological.org/t/response-to-on-the-origin-and-continuing-evolu-tion-of-sars-cov-2/418 (accessed March 7, 2020)

    Google Scholar 

  11. Zhang L, Yang J-R, Zhang Z, Lin Z. Genomic variations of SARS-CoV-2 suggest multiple outbreak sources of transmission. medRxiv 2020; doi: 10.1101/2020.02.25.20027953

    Google Scholar 

  12. Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol 2020; 92: 522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu A, Niu P, Wang L, Zhou H, Zhao X, Wang W, et al. Mutations, recombination and insertion in the evolution of 2019-nCoV. bioRxiv 2020; doi: 10.1101/2020.02.29.971101

    Google Scholar 

  14. Yu WB, Tang GD, Zhang L, Corlett RT. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data. ChinaXiv 2020. http://www.chinaxiv.org/abs/202002.00033 (accessed March 19, 2020)

    Google Scholar 

  15. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020. [Epub ahead of print] doi: 10.1038/s41591-020-0820-9

    Google Scholar 

  16. Liu H, Wu C, Yang Y, Liu Y, Zhang P, Wang Y, Wang Q, et al. Furin, a potential therapeutic target for COVID-19. ChinaXiv 2020. http://www.chinaxiv.org/abs/202002.00062 (accessed March 19, 2020)

    Google Scholar 

  17. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 Mar 4. [Epub ahead of print] doi: 10.1016/j.cell.2020.02.052

    Google Scholar 

  18. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020 Mar 12. [Epub ahead of print] doi: 10.1007/s11684-020-0754-0

    Google Scholar 

  19. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020 Feb 28. [Epub ahead of print] doi: 10.1056/NEJMoa2002032

    Google Scholar 

  24. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. medRxiv 2020; doi: 10.1101/2020.02.16.20023671

    Google Scholar 

  25. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). medRxiv 2020; doi: 10.1101/2020.02.18.20024364

    Google Scholar 

  26. Zhang Z, Li X, Zhang W, Shi ZL, Zheng Z, Wang T. Clinical features and treatment of 2019-nCov pneumonia patients in Wuhan: report of a couple cases. Virol Sin 2020 Feb 7. [Epub ahead of print] doi: 10.1007/s12250-020-00203-8

    Google Scholar 

  27. Wang W, He J, Lie P, Huang L, Wu S, Lin Y, et al. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis. medRxiv 2020; doi: 10.1101/2020.02.26. 20026989

    Google Scholar 

  28. Nazinitsky A, Rosenthal KS. Cytokine storms: systemic disasters of infectious diseases. Infect Dis Clin Pract 2010; 18(3): 188–192

    Article  Google Scholar 

  29. Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, Franchimont P, Bach JF. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-γ [corrected]. N Engl J Med 1989; 320(21): 1420–1421

    Article  CAS  PubMed  Google Scholar 

  30. Behrens EM. Cytokines in cytokine storm syndrome. In: Cron RQ, Behrens EM. Cytokine Storm Syndrome. Cham: Springer International Publishing, 2019. 197–207

    Chapter  Google Scholar 

  31. Okabayashi T, Kariwa H, Yokota S, Iki S, Indoh T, Yokosawa N, Takashima I, Tsutsumi H, Fujii N. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 2006; 78(4): 417–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146(6): 980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J, et al. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019. medRxiv 2020; doi: 10.1101/2020.03.01.20029769

    Google Scholar 

  35. Yu L, Tong Y, Shen G, Fu A, Lai Y, Zhou X, et al. Immunodepletion with hypoxemia: a potential high risk subtype of coronavirus disease 2019. medRxiv 2020; doi: 10.1101/2020.03.03.20030650

    Google Scholar 

  36. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020 Feb 18. [Epub ahead of print] doi: 10.1016/S2213-2600(20)30076-X

    Google Scholar 

  37. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv 2020; doi: 10.1101/2020.02.12.945576

    Google Scholar 

  38. Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. An interferon-g-related cytokine storm in SARS patients. J Med Virol 2005; 75(2): 185–194

    Article  CAS  PubMed  Google Scholar 

  39. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints 2020; 2020020407 https://www.preprints.org/manuscript/202002.0407/v4 (accessed March 19, 2020)

    Google Scholar 

  40. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv 2020; doi: 10.1101/2020.02.11.20022186

    Google Scholar 

  42. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020 Jan 29. [Epub ahead of print] doi: 10.1056/NEJMoa2001316

    Google Scholar 

  43. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol (Zhonghua Liu Xing Bing Xue Za Zhi) 2020; 41(2): 145–151 (in Chinese)

    Google Scholar 

  44. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. The feasibility of convalescent plasma therapy in severe COVID-19 patients: a pilot study. Proc Natl Acad Sci USA 2020; doi: 10.1073/pnas.2004168117

    Google Scholar 

  45. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020 Feb 27. [Epub ahead of print] doi: 10.1016/S1473-3099(20)30141-9

    Google Scholar 

  46. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK; Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Staedtke V, Bai RY, Kim K, Darvas M, Davila ML, Riggins GJ, Rothman PB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Disruption of a self-amplifying catecholamine loop reduces cyto-kine release syndrome. Nature 2018; 564(7735): 273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2(23): 23ra19

    Article  CAS  Google Scholar 

  50. Liu X, Li Z, Liu S, Chen Z, Zhao Z, Huang YY, et al. Therapeutic effects of dipyridamole on COVID-19 patients with coagulation dysfunction. medRxiv 2020; doi: 10.1101/2020.02.27.20027557

    Google Scholar 

  51. Pfaender S, Mar KB, Michailidis E, Kratzel A, Hirt D, V’kovski P, et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. bioRxiv 2020; doi: 10.1101/2020.03.05.979260

    Google Scholar 

  52. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020 Feb 27. [Epub ahead of print] doi:10.1016/j.apsb.2020.02.008

    Google Scholar 

  53. Rimanshee A, Amit D, Vishal P, Mukesh K. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemRxiv 2020; doi: 10.26434/chemrxiv.11860011.v2

    Google Scholar 

  54. Tahirul Qamar M, Alqahtani S, Alamri M, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Preprints 2020; 2020020193 https://www.pre-prints.org/manuscript/202002.0193/v1 (accessed March 19, 2020)

    Google Scholar 

  55. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020 Mar 18. [Epub ahead of print] doi: 10.1056/NEJMoa2001282

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of the National Natural Science Foundation of China (No. 81830093), the CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2019-I2M-1-003), Double First-Class Project (No. WF510162602) and State Key Laboratory of Medical Genomics of Shanghai Jiao Tong University, Overseas Expertise Introduction Project for Discipline Innovation (111 Project) (No. B17029). The study sponsors had no role in the design of the study; the data collection, analysis, or interpretation; the writing of the article; or the decision to submit for publication.

Author information

Authors and Affiliations

  1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China

    Guangbiao Zhou

  2. State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China

    Saijuan Chen & Zhu Chen

Authors
  1. Guangbiao Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Saijuan Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhu Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Guangbiao Zhou or Zhu Chen.

Ethics declarations

Guangbiao Zhou, Saijuan Chen, and Zhu Chen declare no conflict of interests. This manuscript does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Chen, S. & Chen, Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front. Med. 14, 117–125 (2020). https://doi.org/10.1007/s11684-020-0773-x

Download citation

  • Received: 19 March 2020

  • Accepted: 20 March 2020

  • Published: 21 April 2020

  • Issue Date: April 2020

  • DOI: https://doi.org/10.1007/s11684-020-0773-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • COVID-19
  • SARS-CoV-2
  • pathogenesis
  • evidence-based medicine
  • control and therapeutic strategies
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

65.108.231.39

Not affiliated

Springer Nature

© 2023 Springer Nature