Frontiers of Medicine

, Volume 12, Issue 6, pp 634–644 | Cite as

Calorie restriction and its impact on gut microbial composition and global metabolism

  • Xiaojiao Zheng
  • Shouli Wang
  • Wei JiaEmail author
Open Access


Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary interventions for age-related and metabolic diseases.


caloric restriction gut microbiota metabolome 



This work is supported by the National Natural Science Foundation of China (No. 31500954).


  1. 1.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201–204Google Scholar
  2. 2.
    Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA 2007; 297(9): 986–994Google Scholar
  3. 3.
    Zhang C, Li S, Yang L, Huang P, Li W,Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2013; 4(1): 2163Google Scholar
  4. 4.
    Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, Ryu H, Horvath TL, Roh GS, Hwang GS. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep 2016; 6(1): 30111Google Scholar
  5. 5.
    Qu B, Halliwell B, Ong CN, Lee BL, Li QT. Caloric restriction prevents oxidative damage induced by the carcinogen clofibrate in mouse liver. FEBS Lett 2000; 473(1): 85–88Google Scholar
  6. 6.
    Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014; 19(2): 181–192Google Scholar
  7. 7.
    Koubova J, Guarente L. How does calorie restriction work? Genes Dev 2003; 17(3): 313–321Google Scholar
  8. 8.
    Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res 2007; 6(5): 1846–1854Google Scholar
  9. 9.
    Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002; 220(9): 1315–1320Google Scholar
  10. 10.
    Masoro EJ. Food restriction in rodents: an evaluation of its role in the study of aging. J Gerontol 1988; 43(3): B59–B64Google Scholar
  11. 11.
    Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB, German JB, Van Loan MD. Lipid metabolism predicts changes in body composition during energy restriction in overweight humans. J Nutr 2009; 139(2): 222–229Google Scholar
  12. 12.
    López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006; 103(6): 1768–1773Google Scholar
  13. 13.
    Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 2009; 44 (5): 356–362Google Scholar
  14. 14.
    Su HY, Lee HC, Cheng WY, Huang SY. A calorie-restriction diet supplemented with fish oil and high-protein powder is associated with reduced severity of metabolic syndrome in obese women. Eur J Clin Nutr 2015; 69(3): 322–328Google Scholar
  15. 15.
    Schmedes MS, Yde CC, Svensson U, Håkansson J, Baby S, Bertram HC. Impact of a 6-week very low-calorie diet and weight reduction on the serum and fecal metabolome of overweight subjects. Eur Food Res Technol 2015; 240(3): 583–594Google Scholar
  16. 16.
    Kim M, Lee SH, Lee JH. Global metabolic profiling of plasma shows that three-year mild-caloric restriction lessens an age-related increase in sphingomyelin and reduces L-leucine and L-phenylalanine in overweight and obese subjects. Aging Dis 2016; 7(6): 721–733Google Scholar
  17. 17.
    Guarente L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 2008; 132(2): 171–176Google Scholar
  18. 18.
    Zheng X, Zhao A, Xie G, Chi Y, Zhao L, Li H,Wang C, Bao Y, Jia W, Luther M, Su M, Nicholson JK, Jia W. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 2013; 5 (172): 172ra22Google Scholar
  19. 19.
    Goodman AL, Gordon JI. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab 2010; 12(2): 111–116Google Scholar
  20. 20.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505 (7484): 559–563Google Scholar
  21. 21.
    Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes 2018; 9(2): 104–114Google Scholar
  22. 22.
    Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H. Metabolomics insights into the modulatory effects of long-term low calorie intake in mice. J Proteome Res 2016; 15(7): 2299–2308Google Scholar
  23. 23.
    Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. The brain metabolome of male rats across the lifespan. Sci Rep 2016; 6(1): 24125Google Scholar
  24. 24.
    Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125–133Google Scholar
  25. 25.
    Zheng X, Xie G, Jia W. Metabolomic profiling in colorectal cancer: opportunities for personalized medicine. Per Med 2013; 10 (7): 741–755Google Scholar
  26. 26.
    Xu H, Zheng X, Jia W, Yin S. Chromatography/mass spectrometry-based biomarkers in the field of obstructive sleep apnea. Medicine (Baltimore) 2015; 94(40): e1541Google Scholar
  27. 27.
    Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 2017; 7(1): 11955Google Scholar
  28. 28.
    Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C. Impact of hypocaloric hyperproteic diet on gut microbiota in overweight or obese patients with nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 2016; 61(9): 2721–2731Google Scholar
  29. 29.
    Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A, Clemente A, García F, Margolles A, Ferrer M, Campoy C, Suárez A. One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environ Microbiol 2017; 19(4): 1536–1551Google Scholar
  30. 30.
    Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front Immunol 2017; 8: 1164Google Scholar
  31. 31.
    Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE. The effect of food restriction on the composition of intestinal microflora in rats. Exp Gerontol 1998; 33(3): 239–247Google Scholar
  32. 32.
    Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice. Mol Carcinog 2007; 46(1): 42–48Google Scholar
  33. 33.
    Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y; EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring) 2009; 17(10): 1906–1915Google Scholar
  34. 34.
    Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, Huson DH, Bischoff SC. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Res Int 2015; 2015: 806248Google Scholar
  35. 35.
    Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C, Benítez-Páez A, Gauffin-Cano P, Medina RB. Lactobacillus fermentum CRL1446 ameliorates oxidative and metabolic parameters by increasing intestinal feruloyl esterase activity and modulating microbiota in caloric-restricted mice. Nutrients 2016; 8 (7): E415Google Scholar
  36. 36.
    Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 2006; 30(4): 487–513Google Scholar
  37. 37.
    Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006; 55(11): 1553–1560Google Scholar
  38. 38.
    Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2015; 47(6): 430–440Google Scholar
  39. 39.
    Zhang C, Zhang M,Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010; 4(2): 232–241Google Scholar
  40. 40.
    Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 2009; 4 (7): e6462Google Scholar
  41. 41.
    Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, Ott SJ. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 2008; 57(Pt 12): 1569–1576Google Scholar
  42. 42.
    Zweigner J, Schumann RR, Weber JR. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect 2006; 8(3): 946–952Google Scholar
  43. 43.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761–1772Google Scholar
  44. 44.
    Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 2013; 14(12): 950–959Google Scholar
  45. 45.
    Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577–591Google Scholar
  46. 46.
    Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 2013; 8(5): e63388Google Scholar
  47. 47.
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190–195Google Scholar
  48. 48.
    Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics 2006; 27(3): 187–200Google Scholar
  49. 49.
    Richards SE, Wang Y, Lawler D, Kochhar S, Holmes E, Lindon JC, Nicholson JK. Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: application to a life-long caloric restriction study in dogs. Anal Chem 2008; 80(13): 4876–4885Google Scholar
  50. 50.
    Margolis LM, Rivas DA, Ezzyat Y, Gaffney-Stomberg E, Young AJ, McClung JP, Fielding RA, Pasiakos SM. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats. Nutrients 2016; 8(9): E571Google Scholar
  51. 51.
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002; 51(3): 599–605Google Scholar
  52. 52.
    Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Reports 2015; 11(10): 1529–1534Google Scholar
  53. 53.
    Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–1683Google Scholar
  54. 54.
    Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 2008; 4: 214Google Scholar
  55. 55.
    Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 2006; 84(3): 531–539Google Scholar
  56. 56.
    Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Nutritional impact on the plasma metabolome of rats. Toxicol Lett 2011; 207(2): 173–181Google Scholar
  57. 57.
    Simón E, Portillo MP, Fernández-Quintela A, Zulet MA, Martínez JA, Del Barrio AS. Responses to dietary macronutrient distribution of overweight rats under restricted feeding. Ann Nutr Metab 2002; 46(1): 24–31Google Scholar
  58. 58.
    Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 2001; 268(5): 1363–1372Google Scholar
  59. 59.
    Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 2013; 12(4): 1527–1546Google Scholar
  60. 60.
    Jové M, Naudí A, Ramírez-Núñez O, Portero-Otín M, Selman C, Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014; 13 (5): 828–837Google Scholar
  61. 61.
    Zheng H, Lorenzen JK, Astrup A, Larsen LH, Yde CC, Clausen MR, Bertram HC. Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women: an NMR-based metabolomics investigation. Nutrients 2016; 8(3): 108Google Scholar
  62. 62.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–1267Google Scholar
  63. 63.
    Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbialmammalian co-metabolism. J Proteome Res 2011; 10(12): 5512–5522Google Scholar
  64. 64.
    Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLCTOF MS. Mol Biosyst 2005; 1(2): 166–175Google Scholar
  65. 65.
    Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J, Beger RD. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. BMC Bioinformatics 2007; 8(Suppl 7): S3Google Scholar
  66. 66.
    Hennebelle M, Roy M, St-Pierre V, Courchesne-Loyer A, Fortier M, Bouzier-Sore AK, Gallis JL, Beauvieux MC, Cunnane SC. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet. Nutrition 2015; 31(3): 523–530Google Scholar
  67. 67.
    Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear magnetic resonance-based blood metabolic profiles of rats exposed to shortterm caloric restriction. Anal Lett 2015; 48(16): 2613–2625Google Scholar
  68. 68.
    al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135–136Google Scholar
  69. 69.
    De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. Age (Dordr) 2013; 35(4): 1091–1104Google Scholar
  70. 70.
    Zhang Y, Yan S, Gao X, Dai W, Liu S, Jin H, Zhang W, Mei C. Metabonomic investigation on the protective effects of rosiglitazone and caloric restriction for renal senescence in a rat model. Aging Clin Exp Res 2012; 24(5): 430–438Google Scholar
  71. 71.
    Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11(1): 23Google Scholar
  72. 72.
    Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G, Bonadonna RC, Frontoni S. Very-low-calorie diet: a quick therapeutic tool to improve β cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr 2012; 95(3): 609–613Google Scholar
  73. 73.
    Szapary PO, Rader DJ. The triglyceride-high-density lipoprotein axis: an important target of therapy? Am Heart J 2004; 148(2): 211–221Google Scholar
  74. 74.
    Cazzola R, Rondanelli M, Trotti R, Cestaro B. Effects of weight loss on erythrocyte membrane composition and fluidity in overweight and moderately obese women. J Nutr Biochem 2011; 22(4): 388–392Google Scholar
  75. 75.
    Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; 55(9): 2579–2587Google Scholar
  76. 76.
    Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, Comuzzie AG, Mahaney MC, Jowett JB, Shaw J, Curran JE, Blangero J, Meikle PJ. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013; 54(10): 2898–2908Google Scholar
  77. 77.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131–1135Google Scholar
  78. 78.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415–1428Google Scholar
  79. 79.
    Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov YB, Yu H, Chen T, Zhang Y,Wang C, Hu C, Su M, Xie G, Zhao A, Jia W, Jia W. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine 2015; 2(10): 1513–1522Google Scholar
  80. 80.
    Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome Res 2012; 11(4): 2224–2235Google Scholar
  81. 81.
    Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 1994; 8(15): 1308–1311Google Scholar
  82. 82.
    Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2017; 15(2): 111–128Google Scholar
  83. 83.
    Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8): 678–693Google Scholar
  84. 84.
    Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol 2013; 273(3): 680–690Google Scholar
  85. 85.
    Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, Risérus U, Rudling M. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity. J Intern Med 2017; 281(5): 507–517Google Scholar
  86. 86.
    Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16(3): 529–540Google Scholar
  87. 87.
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848–860Google Scholar
  88. 88.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439(7075): 484–489Google Scholar
  89. 89.
    Ferbeyre G. Bile acids in the fountain of youth. Aging (Albany NY) 2010; 2(7): 383–384Google Scholar
  90. 90.
    MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman N. Alanine metabolism and gluconeogenesis in the rat. Am J Physiol 1976; 231(2): 619–626Google Scholar
  91. 91.
    Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432): 1390–1393Google Scholar
  92. 92.
    Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25(3): 294–297Google Scholar
  93. 93.
    Wu C, Kang JE, Peng LJ, Li H, Khan SA, Hillard CJ, Okar DA, Lange AJ. Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation. Cell Metab 2005; 2(2): 131–140Google Scholar
  94. 94.
    Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM. PPARd regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 2006; 103(9): 3444–3449Google Scholar
  95. 95.
    Gu Y, Zhao A, Huang F, Zhang Y, Liu J, Wang C, Jia W, Xie G, Jia W. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J Proteome Res 2013; 12(12): 5801–5811Google Scholar
  96. 96.
    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O,Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branchedchain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326Google Scholar
  97. 97.
    Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP. Branchedchain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012; 55(2): 321–330Google Scholar
  98. 98.
    Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007; 85(4): 996–1004Google Scholar
  99. 99.
    Tavernarakis N, Driscoll M. Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev 2002; 123(2-3): 215–229Google Scholar
  100. 100.
    Ingram DK, Young J, Mattison JA. Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 2007; 145(4): 1359–1364Google Scholar
  101. 101.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICROObes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426–436Google Scholar
  102. 102.
    Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 2017; 21(1): 84–96Google Scholar
  103. 103.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–546Google Scholar
  104. 104.
    Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium, Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588Google Scholar
  105. 105.
    Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 2014; 111(36): 13145–13150Google Scholar
  106. 106.
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079–1094Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, which indicates if changes are made.

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational MedicineShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  2. 2.University of Hawaii Cancer CenterHonoluluUSA

Personalised recommendations