Current advances for bone regeneration based on tissue engineering strategies

Abstract

Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Khan SN, Cammisa FPJr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13(1): 77–86

    Article  PubMed  Google Scholar 

  2. 2.

    Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Re. 2014; 9(1): 18

    Article  Google Scholar 

  3. 3.

    Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010; 47(1): 1–4

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 2014; 3(1): 3–7

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gómez S, Vlad MD, López J, Fernández E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomate. 2016; 42: 341–350

    Article  CAS  Google Scholar 

  6. 6.

    D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Me. 2015; 13(1): 186

    Article  CAS  Google Scholar 

  7. 7.

    Pittenger MF. Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 2008; 449: 27–44

    CAS  PubMed  Google Scholar 

  8. 8.

    Wang ZG, Wang Y, Huang Y, Lu Q, Zheng L, Hu D, Feng WK, Liu YL, Ji KT, Zhang HY, Fu XB, Li XK, Chu MP, Xiao J. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of th. PI3K/Akt/mTOR pathway. Sci Re. 2015; 5(1): 9287

    CAS  Google Scholar 

  9. 9.

    Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sc. 2014; 39(7): 1235–1265

    Article  CAS  Google Scholar 

  10. 10.

    Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014; 14(1): 15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539–1560

    CAS  PubMed  Google Scholar 

  12. 12.

    Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Re. 2015; 3(1): 15029

    Article  CAS  Google Scholar 

  13. 13.

    Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83: 363–382

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Harris GM, Rutledge K, Cheng Q, Blanchette J, Jabbarzadeh E. Strategies to direct angiogenesis within scaffolds for bone tissue engineering. Curr Pharm De. 2013; 19(19): 3456–3465

    Article  CAS  Google Scholar 

  15. 15.

    Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering. Integrating biological and physicomechanical strategies. Adv Drug Deliv Re. 2015; 84: 1–29

    Article  CAS  Google Scholar 

  16. 16.

    Li Y, Thula TT, Jee S, Perkins SL, Aparicio C, Douglas EP, Gower LB. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 2012; 13(1): 49–59

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 2014; 10(10): 3124–3140

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Sang L, Huang J, Luo D, Chen Z, Li X. Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability. J Mater Sci Mater Me. 2010; 21(9): 2561–2568

    Article  CAS  Google Scholar 

  19. 19.

    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529–2543

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 2008; 29(30): 4091–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lin KF, He S, Song Y, Wang CM, Gao Y, Li JQ, Tang P, Wang Z, Bi L, Pei GX. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl Mater Interfaces 2016; 8(11): 6905–6916

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 2008; 29(27): 3625–3635

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Patra S, Young V. A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem Biophy. 2016; 74(2): 93–98

    Article  CAS  Google Scholar 

  24. 24.

    Brunello G, Sivolella S, Meneghello R, Ferroni L, Gardin C, Piattelli A, Zavan B, Bressan E. Powder-based 3D printing for bone tissue engineering. Biotechnol Ad. 2016; 34(5): 740–753

    Article  CAS  Google Scholar 

  25. 25.

    Warnke PH, Seitz H, Warnke F, Becker ST, Sivananthan S, Sherry E, Liu Q, Wiltfang J, Douglas T. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomate. 2010; 93(1): 212–217

    Google Scholar 

  26. 26.

    Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S. Selective laser sintering fabrication of nano-hydroxyapatite/poly-e-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 2013; 8: 4197–4213

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol En. 2015; 9(1): 4

    Article  CAS  Google Scholar 

  28. 28.

    Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Me. 2015; 9(3): 174–190

    Article  CAS  Google Scholar 

  29. 29.

    Zhang LC, Attar H, Calin M, Eckert J. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater Techno. 2016; 31(2): 66–76

    Article  CAS  Google Scholar 

  30. 30.

    Körner C. Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Re. 2016; 61(5): 361–367

    Article  CAS  Google Scholar 

  31. 31.

    Bose S, Tarafder S, Bandyopadhyay A. Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed En. 2017; 45(1): 261–272

    Article  Google Scholar 

  32. 32.

    Torres J, Tamimi F, Alkhraisat MH, Prados-Frutos JC, Rastikerdar E, Gbureck U, Barralet JE, López-Cabarcos E. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodonto. 2011; 38(12): 1147–1153

    Article  Google Scholar 

  33. 33.

    Tarafder S, Davies NM, Bandyopadhyay A, Bose S. 3D printed tricalcium phosphate scaffolds: effect o. SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sc. 2013; 1(12): 1250–1259

    Article  CAS  Google Scholar 

  34. 34.

    Tamimi F, Torres J, Al-Abedalla K, Lopez-Cabarcos E, Alkhraisat MH, Bassett DC, Gbureck U, Barralet JE. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials 2014; 35(21): 5436–5445

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Castilho M, Dias M, Vorndran E, Gbureck U, Fernandes P, Pires I, Gouveia B, Armés H, Pires E, Rodrigues J. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabricatio. 2014; 6(2): 025005

    Article  Google Scholar 

  36. 36.

    Ronca A, Ambrosio L, Grijpma DW. Design of porous threedimensiona. PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mate. 2012; 10(3): 249–258

    CAS  Google Scholar 

  37. 37.

    Lan PX, Lee JW, Seol YJ, Cho DW. Development of 3. PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Me. 2009; 20(1): 271–279

    Article  CAS  Google Scholar 

  38. 38.

    Guo R, Lu S, Page JM, Merkel AR, Basu S, Sterling JA, Guelcher SA. Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv Healthc Mater 2015; 4(12): 1826–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nowicki MA, Castro NJ, Plesniak MW, Zhang LG. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 2016; 27(41): 414001

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Ostrowska B, Di Luca A, Szlazak K, Moroni L, Swieszkowski W. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration. J Biomed Mater Res. 2016; 104(4): 991–1001

    Article  CAS  Google Scholar 

  41. 41.

    Xu N, Ye X, Wei D, Zhong J, Chen Y, Xu G, He D. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces 2014; 6(17): 14952–14963

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Xuan Y, Tang H, Wu B, Ding X, Lu Z, Li W, Xu Z. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J Biomed Mater Res. 2014; 102(10): 3401–3408

    Article  CAS  Google Scholar 

  43. 43.

    Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012; 64(12): 1257–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Releas. 2016; 225: 152–169

    Article  CAS  Google Scholar 

  45. 45.

    McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, Murphy JM, Barry FP, Guldberg RE, O’Brien FJ. The delayed addition of human mesenchymal stem cells to preformed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater 2013; 9(12): 9303–9316

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219: 129–140

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterial. 2008; 29(31): 4195–4204

    Article  CAS  Google Scholar 

  48. 48.

    Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, Wenke JC, Yang Y. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomate. 2012; 8(5): 1768–1777

    Article  CAS  Google Scholar 

  49. 49.

    Rothstein SN, Huber KD, Sluis-Cremer N, Little SR. In vitro characterization of a sustained-release formulation for enfuvirtide. Antimicrob Agents Chemother 2014; 58(3): 1797–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Perez RA, Kim HW. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21: 2–19

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Kempen DH, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, Yaszemski MJ, Dhert WJ. Effect of local sequentia. VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterial. 2009; 30(14): 2816–2825

    Article  CAS  Google Scholar 

  52. 52.

    Wu C, Fan W, Gelinsky M, Xiao Y, Chang J, Friis T, Cuniberti G. In situ preparation and protein delivery of silicate-alginate composite microspheres with core-shell structure. J R Soc Interface 2011; 8(65): 1804–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Bai Y, Leng Y, Yin G, Pu X, Huang Z, Liao X, Chen X, Yao Y. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Re. 2014; 356(1): 109–121

    Article  CAS  Google Scholar 

  54. 54.

    Boanini E, Bigi A. Biomimetic gelatin-octacalcium phosphate core–shell microspheres. J Colloid Interface Sci 2011; 362(2):594–599

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Releas. 2013; 168(2): 166–178

    Article  CAS  Google Scholar 

  56. 56.

    Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van de Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterial. 2014; 35(31): 8829–8839

    Article  CAS  Google Scholar 

  57. 57.

    Shah NJ, Hyder MN, Quadir MA, Dorval Courchesne NM, Seeherman HJ, Nevins M, Spector M, Hammond PT. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. Proc Natl Acad Sci USA 2014; 111(35): 12847–12852

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012; 6(9): 8041–8051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Min J, Braatz RD, Hammond PT. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials 2014; 35(8): 2507–2517

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Derby B. Printing and prototyping of tissues and scaffolds. Scienc. 2012; 338(6109): 921–926

    Article  CAS  Google Scholar 

  61. 61.

    Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Me. 2016; 14(1): 271

    Article  CAS  Google Scholar 

  62. 62.

    Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechno. 2016; 34(3): 312–319

    Article  CAS  Google Scholar 

  63. 63.

    Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterial. 2016; 102: 20–42

    Article  CAS  Google Scholar 

  64. 64.

    Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part. 2012; 18(11–12): 1304–1312

    Article  CAS  Google Scholar 

  65. 65.

    Cui X, Breitenkamp K, Lotz M, D’Lima D. Synergistic action of fibroblast growth factor-2 and transforming growth factor-ß1 enhances bioprinted human neocartilage formation. Biotechnol Bioen. 2012; 109(9): 2357–2368

    Article  CAS  Google Scholar 

  66. 66.

    Cui X, Gao G, Qiu Y. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Let. 2013; 35(3): 315–321

    Article  CAS  Google Scholar 

  67. 67.

    Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 2014; 9(10): 1304–1311

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015; 10(10): 1568–1577

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Gao G, Schilling AF, Hubbell K, Yonezawa T, Truong D, Hong Y, Dai G, Cui X. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Let. 2015; 37(11): 2349–2355

    Article  CAS  Google Scholar 

  70. 70.

    Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34(4): 422–434

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterial. 2016; 76: 321–343

    Article  CAS  Google Scholar 

  72. 72.

    Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Lu CH, Chang YH, Lin SY, Li KC, Hu YC. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31(8): 1695–1706

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Carlier A, Skvortsov GA, Hafezi F, Ferraris E, Patterson J, Koç B, Van Oosterwyck H. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabricatio. 2016; 8(2): 025009

    Article  CAS  Google Scholar 

  75. 75.

    Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Curr Pharm Biotechno. 2013; 14(1): 91–97

    CAS  Google Scholar 

  76. 76.

    Jana S, Lerman A. Bioprinting a cardiac valve. Biotechnol Ad. 2015; 33(8): 1503–1521

    Article  Google Scholar 

  77. 77.

    Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amédée J, Guillemot F. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabricatio. 2011; 3(2): 025001

    Article  CAS  Google Scholar 

  78. 78.

    Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabricatio. 2014; 6(4): 045001

    Article  CAS  Google Scholar 

  79. 79.

    Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, Yan J, Hu W, Xu Y, Zhou Z, Wang Y, Wang L. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Me. 2015; 26(1): 51

    Article  CAS  Google Scholar 

  80. 80.

    Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 2015; 37: 230–241

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD, Yang MT, Miller JS, Bhatia SN, Chen CS. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci USA 2013; 110(19): 7586–7591

    Article  PubMed  Google Scholar 

  82. 82.

    Barabaschi GD, Manoharan V, Li Q, Bertassoni LE. Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol 2015; 881: 79–94

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc 2010; 5(3): 491–502

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y, Khademhosseini A. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterial. 2012; 33(35): 9009–9018

    Article  CAS  Google Scholar 

  85. 85.

    Raghavan S, Nelson CM, Baranski JD, Lim E, Chen CS. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 2010; 16(7): 2255–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, López JA, Stroock AD. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S. 2012; 109(24): 9342–9347

    Article  Google Scholar 

  87. 87.

    Wray LS, Tsioris K, Gi ES, Omenetto FG, Kaplan DL. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 2013; 23(27): 3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012; 11(9): 768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, Zorlutuna P, Vrana NE, Ghaemmaghami AM, Dokmeci MR, Khademhosseini A. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabricatio. 2014; 6(2): 024105

    Article  CAS  Google Scholar 

  90. 90.

    Kinstlinger IS, Yalacki DR, Miller JS. Engineered tissues with perfusable vascular networks created by sacrificial templating of laser sintered carbohydrates. Front Bioeng Biotechnol 2016; Conference Abstract: 10th World Biomaterials Congress. https://doi.org/10.3389/conf.FBIOE.2016.01.00491

  91. 91.

    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cellladen tissue constructs. Adv Mater 2014; 26(19): 3124–3130

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Radtke CL, Nino-Fong R, Esparza Gonzalez BP, Stryhn H, McDuffee LA. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am J Vet Res 2013; 74(5): 790–800

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cell. 2006; 24(5): 1294–1301

    Article  CAS  Google Scholar 

  94. 94.

    Pantalone A, Antonucci I, Guelfi M, Pantalone P, Usuelli FG, Stuppia L, Salini V. Amniotic fluid stem cells: an ideal resource for therapeutic application in bone tissue engineering. Eur Rev Med Pharmacol Sc. 2016; 20(13): 2884–2890

    CAS  Google Scholar 

  95. 95.

    Petridis X, Diamanti E, Trigas GCh, Kalyvas D, Kitraki E. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J Craniomaxillofac Sur. 2015; 43(4): 483–490

    Article  Google Scholar 

  96. 96.

    Guan J, Zhang J, Li H, Zhu Z, Guo S, Niu X, Wang Y, Zhang C. Human urine derived stem cells in combination with ß-TCP can be applied for bone regeneration. PLoS On. 2015; 10(5): e0125253

    Article  CAS  Google Scholar 

  97. 97.

    Illich DJ, Demir N, Stojkovic M, Scheer M, Rothamel D, Neugebauer J, Hescheler J, Zoller JE. Induced pluripotent stem(iPS) cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 2011; 29(4): 555–563

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, Lu WJ, Senarath-Yapa K, Chung MT, Marecic O, Tran M, Yan KS, Upton R, Walmsley GG, Lee AS, Sahoo D, Kuo CJ, Weissman IL, Longaker MT. Identification and specification of the mouse skeletal stem cell. Cell 2015; 160(1–2): 285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Aicher WK, Bühring HJ, Hart M, Rolauffs B, Badke A, Klein G. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—potential and pitfalls. Adv Drug Deliv Re. 2011; 63(4–5): 342–351

    Article  CAS  Google Scholar 

  100. 100.

    Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 2014; 9(12): e115963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Li YY, Cheng HW, Cheung KM, Chan D, Chan BP. Mesenchymal stem cell-collagen microspheres for articular cartilage repair: cell density and differentiation status. Acta Biomater 2014; 10(5): 1919–1929

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sc. 2009; 76(2): 56–66

    Article  Google Scholar 

  103. 103.

    Levi B, Longaker MT. Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells 2011; 29(4): 576–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Markarian CF, Frey GZ, Silveira MD, Chem EM, Milani AR, Ely PB, Horn AP, Nardi NB, Camassola M. Isolation of adiposederived stem cells: a comparison among different methods. Biotechnol Let. 2014; 36(4): 693–702

    Article  CAS  Google Scholar 

  105. 105.

    Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells In. 2012; 2012: 81

    Google Scholar 

  106. 106.

    Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Re. 2011; 7(2): 269–291

    Article  Google Scholar 

  107. 107.

    Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Péault B, Cummins J, Huard J. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Proto. 2008; 3(9): 1501–1509

    Article  CAS  Google Scholar 

  108. 108.

    Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Re. 2010; 340(3): 549–567

    Article  Google Scholar 

  109. 109.

    Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, Umezawa A, Sekiya I. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheu. 2008; 58(2): 501–510

    Article  CAS  Google Scholar 

  110. 110.

    Fan J, Varshney RR, Ren L, Cai D, Wang DA. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 2009; 15(1): 75–86

    Article  CAS  PubMed  Google Scholar 

  111. 111.

    Yamazaki H, Tsuneto M, Yoshino M, Yamamura K, Hayashi S. Potential of dental mesenchymal cells in developing teeth. Stem Cell. 2007; 25(1): 78–87

    Article  CAS  Google Scholar 

  112. 112.

    Guan JJ, Niu X, Gong FX, Hu B, Guo SC, Lou YL, Zhang CQ, Deng ZF, Wang Y. Biological characteristics of human-urinederived stem cells: potential for cell-based therapy in neurology. Tissue Eng Part. 2014; 20(13–14): 1794–1806

    Article  CAS  Google Scholar 

  113. 113.

    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147

    Article  CAS  Google Scholar 

  114. 114.

    Hwang YS, Polak JM, Mantalaris A. In vitro direct osteogenesis of murine embryonic stem cells without embryoid body formation. Stem Cells De. 2008; 17(5): 963–970

    Article  CAS  Google Scholar 

  115. 115.

    Ström S, Inzunza J, Grinnemo KH, Holmberg K, Matilainen E, Strömberg AM, Blennow E, Hovatta O. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Repro. 2007; 22(12): 3051–3058

    Article  Google Scholar 

  116. 116.

    Bielec B, Stojko R. Stem cells of umbilical blood cord — therapeutic use. Postepy Hig Med Dosw(Online. 2015; 69: 853–863(i. Polish)

    Article  Google Scholar 

  117. 117.

    Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Re. 2011; 7(1): 1–16

    Article  CAS  Google Scholar 

  118. 118.

    Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germlike cells in vitro. J Cell Bioche. 2010; 109(4): 747–754

    CAS  Google Scholar 

  119. 119.

    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechno. 2007; 25(1): 100–106

    Article  CAS  Google Scholar 

  120. 120.

    Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A, Anagnou NP. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931–952

    Article  CAS  PubMed  Google Scholar 

  121. 121.

    Trohatou O, Anagnou NP, Roubelakis MG. Human amniotic fluid stem cells as an attractive tool for clinical applications. Curr Stem Cell Res Ther 2013; 8(2): 125–132

    Article  CAS  PubMed  Google Scholar 

  122. 122.

    Gholizadeh-Ghaleh Aziz S, Pashaei-Asl F, Fardyazar Z, Pashaiasl M. Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PLoS On. 2016; 11(7): e0158281

    Article  CAS  Google Scholar 

  123. 123.

    Lee JM, Jung J, Lee HJ, Jeong SJ, Cho KJ, Hwang SG, Kim GJ. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 2012; 13(2): 219–224

    Article  CAS  PubMed  Google Scholar 

  124. 124.

    Fazekasova H, Lechler R, Langford K, Lombardi G. Placentaderived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. J Tissue Eng Regen Me. 2011; 5(9): 684–694

    Article  CAS  Google Scholar 

  125. 125.

    Zhong ZN, Zhu SF, Yuan AD, Lu GH, He ZY, Fa ZQ, Li WH. Potential of placenta-derived mesenchymal stem cells as seed cells for bone tissue engineering: preliminary study of osteoblastic differentiation and immunogenicity. Orthopedics 2012; 35(9): 779–788

    Article  PubMed  Google Scholar 

  126. 126.

    Semenov OV, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch AH, Malek A. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 2010; 202(2): 193. e1–193. e13

    Article  CAS  PubMed  Google Scholar 

  127. 127.

    Lange-Consiglio A, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Vet. 2013; 45(6): 737–744

    Article  CAS  Google Scholar 

  128. 128.

    Violini S, Gorni C, Pisani LF, Ramelli P, Caniatti M, Mariani P. Isolation and differentiation potential of an equine amnion-derived stromal cell line. Cytotechnolog. 2012; 64(1): 1–7

    Article  Google Scholar 

  129. 129.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cel. 2006; 126(4): 663–676

    Article  CAS  Google Scholar 

  130. 130.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cel. 2007; 131(5): 861–872

    Article  CAS  Google Scholar 

  131. 131.

    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917–1920

    Article  CAS  Google Scholar 

  132. 132.

    Jung Y, Bauer G, Nolta JA. Concise review. Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cell. 2012; 30(1): 42–47

    Article  CAS  Google Scholar 

  133. 133.

    Grellier M, Bordenave L, Amédée J. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechno. 2009; 27(10): 562–571

    Article  CAS  Google Scholar 

  134. 134.

    Nakasa T, Ishida O, Sunagawa T, Nakamae A, Yasunaga Y, Agung M, Ochi M. Prefabrication of vascularized bone graft using a combination of fibroblast growth factor-2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic. J Biomed Mater Res. 2005; 75(2): 350–355

    Article  CAS  Google Scholar 

  135. 135.

    Kawamura K, Yajima H, Ohgushi H, Tomita Y, Kobata Y, Shigematsu K, Takakura Y. Experimental study of vascularized tissue-engineered bone grafts. Plast Reconstr Sur. 2006; 117(5): 1471–1479

    Article  CAS  Google Scholar 

  136. 136.

    Sun H, Qu Z, Guo Y, Zang G, Yang B. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid(PLGA) scaffolds. Biomed Eng Onlin. 2007; 6: 41

    Article  CAS  Google Scholar 

  137. 137.

    Xue Y, Xing Z, Bolstad AI, Van Dyke TE, Mustafa K. Co-culture of human bone marrow stromal cells with endothelial cells alters gene expression profiles. Int J Artif Organs 2013; 36(9): 650–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Nesti LJ, Caterson EJ, Li WJ, Chang R, McCann TD, Hoek JB, Tuan RS. TGF-ß1 calcium signaling in osteoblasts. J Cell Biochem 2007; 101(2): 348–359

    Article  CAS  PubMed  Google Scholar 

  139. 139.

    Stahl A, Wenger A, Weber H, Stark GB, Augustin HG, Finkenzeller G. Bi-directional cell contact-dependent regulation of gene expression between endothelial cells and osteoblasts in a three-dimensional spheroidal coculture model. Biochem Biophys Res Commu. 2004; 322(2): 684–692

    Article  CAS  Google Scholar 

  140. 140.

    Santos MI, Unger RE, Sousa RA, Reis RL, Kirkpatrick CJ. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 2009; 30(26): 4407–4415

    Article  CAS  PubMed  Google Scholar 

  141. 141.

    Dohle E, Fuchs S, Kolbe M, Hofmann A, Schmidt H, Kirkpatrick CJ. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 2010; 16(4): 1235–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Colnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Re. 2009; 24(2): 274–282

    Article  Google Scholar 

  143. 143.

    Chen D, Zhang X, He Y, Lu J, Shen H, Jiang Y, Zhang C, Zeng B. Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone. J Tissue Eng Regen Me. 2012; 6(10): 822–832

    Article  CAS  Google Scholar 

  144. 144.

    Chen D, Shen H, He Y, Chen Y, Wang Q, Lu J, Jiang Y. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Mol Med Re. 2015; 11(2): 1111–1119

    Article  CAS  Google Scholar 

  145. 145.

    Park JS, Park KH. Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded i. PLGA microspheres. Biomater Re. 2016; 20(1): 4

    Article  CAS  Google Scholar 

  146. 146.

    Wu L, Zhao X, He B, Jiang J, Xie XJ, Liu L. The possible roles of biological bone constructed with peripheral blood derived EPCs and BMSCs in osteogenesis and angiogenesis. Biomed Res Int. 2016; 2016: 8168943

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Fisher JN, Peretti GM, Scotti C. Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int 2016. 2016: 9352598

    Google Scholar 

  148. 148.

    Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY. Bone marrow- and subcutaneous adipose tissuederived mesenchymal stem cells: differences and similarities. Cell Cycle 2012; 11(2): 377–383

    Article  CAS  PubMed  Google Scholar 

  149. 149.

    Brocher J, Janicki P, Voltz P, Seebach E, Neumann E, Mueller-Ladner U, Richter W. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Re. 2013; 11(3): 1393–1406

    Article  CAS  Google Scholar 

  150. 150.

    Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, Mannerström B, Patrikoski M, Seppänen R, Miettinen S, Rautiainen M, Öhman J. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Me. 2014; 3(4): 530–540

    Article  CAS  Google Scholar 

  151. 151.

    Kuhn LT, Liu Y, Boyd NL, Dennis JE, Jiang X, Xin X, Charles LF, Wang L, Aguila HL, Rowe DW, Lichtler AC, Goldberg AJ. Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 2014; 20(1–2): 365–377

    Article  CAS  PubMed  Google Scholar 

  152. 152.

    Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, Sun N, Lee M, Grova M, Connolly AJ, Wu JC, Gurtner GC, Weissman IL, Wan DC, Longaker MT. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S. 2012; 109(50): 20379–20384

    Article  Google Scholar 

  153. 153.

    Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E, Gangji V. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bon. 2013; 53(2): 391–398

    Article  CAS  Google Scholar 

  154. 154.

    Yamada Y, Nakamura S, Ito K, Sugito T, Yoshimi R, Nagasaka T, Ueda M. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part. 2010; 16(6): 1891–1900

    Article  CAS  Google Scholar 

  155. 155.

    Balmayor ER. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015; 94: 13–27

    Article  CAS  PubMed  Google Scholar 

  156. 156.

    Maßsagué J, Wotton D. Transcriptional control by the TGF-ß/Smad signaling system. EMBO. 2000; 19(8): 1745–1754

    Article  Google Scholar 

  157. 157.

    Joyce ME, Jingushi S, Bolander ME. Transforming growth factor- ß in the regulation of fracture repair. Orthop Clin North Am 1990; 21(1): 199–209

    CAS  PubMed  Google Scholar 

  158. 158.

    Lind M, Schumacker B, Søballe K, Keller J, Melsen F, Bünger C. Transforming growth factor-ß enhances fracture healing in rabbit tibiae. Acta Orthop Scan. 1993; 64(5): 553–556

    Article  CAS  Google Scholar 

  159. 159.

    Critchlow MA, Bland YS, Ashhurst DE. The effect of exogenous transforming growth factor-ß 2 on healing fractures in the rabbit. Bone 1995; 16(5): 521–527

    Article  CAS  PubMed  Google Scholar 

  160. 160.

    Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer(PLA-PEG), and bone morphogenetic protein-2(rhBMP-2). Osteoarthritis Cartilag. 2005; 13(5): 405–417

    Article  Google Scholar 

  161. 161.

    Vrijens K, Lin W, Cui J, Farmer D, Low J, Pronier E, Zeng FY, Shelat AA, Guy K, Taylor MR, Chen T, Roussel MF. Identification of small molecule activators o. BMP signaling. PLoS On. 2013; 8(3): e59045

    Article  CAS  Google Scholar 

  162. 162.

    Bandyopadhyay A, Yadav PS, Prashar P. BMP signaling in development and diseases: a pharmacological perspective. Biochem Pharmaco. 2013; 85(7): 857–864

    Article  CAS  Google Scholar 

  163. 163.

    Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G, Faucheux N. The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part. 2012; 18(3–4): 342–352

    Article  CAS  Google Scholar 

  164. 164.

    Takahashi Y, Yamamoto M, Yamada K, Kawakami O, Tabata Y. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue En. 2007; 13(2): 293–300

    Article  CAS  Google Scholar 

  165. 165.

    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cel. 2002; 13(12): 4279–4295

    Article  CAS  Google Scholar 

  166. 166.

    Wang J, Zheng Y, Zhao J, Liu T, Gao L, Gu Z, Wu G. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation. J Clin Periodonto. 2012; 39(1): 98–105

    Article  Google Scholar 

  167. 167.

    He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/ hydroxyapatite scaffolds. PLoS On. 2014; 9(8): e104061

    Article  CAS  Google Scholar 

  168. 168.

    Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, Pan H, Zou Z, Chen C. Repair of rat cranial bone defects with nHAC/PLLA and BMP- 2-related peptide or rhBMP-2. J Orthop Re. 2011; 29(11): 1745–1752

    Article  CAS  Google Scholar 

  169. 169.

    Lind M. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Supp. 1998; 283: 2–37

    CAS  Google Scholar 

  170. 170.

    Kato T, Kawaguchi H, Hanada K, Aoyama L, Hiyama Y, Nakamura T, Kuzutani K, Tamura M, Kurokawa T, Nakamura K. Single local injection of re-combinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Re. 1998; 16: 654–659

    Article  CAS  Google Scholar 

  171. 171.

    Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 2007; 302(1): 80–91

    Article  CAS  PubMed  Google Scholar 

  172. 172.

    Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn 2009; 238(3): 766–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Behr B, Leucht P, Longaker MT, Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S. 2010; 107(26): 11853–11858

    Article  CAS  Google Scholar 

  174. 174.

    Bak B, Jørgensen PH, Andreassen TT. Dose response of growth hormone on fracture healing in the rat. Acta Orthop Scan. 1990; 61(1): 54–57

    Article  CAS  Google Scholar 

  175. 175.

    Thaller SR, Dart A, Tesluk H. The effects of insulin-like growth factor-1 on critical-size calvarial defects in Sprague-Dawley rats. Ann Plast Sur. 1993; 31(5): 429–433

    Article  CAS  Google Scholar 

  176. 176.

    Segar CE, Ogle ME, Botchwey EA. Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules. Curr Pharm Des 2013; 19(19): 3403–3419

    Article  CAS  PubMed  Google Scholar 

  177. 177.

    Street J, Bao M, de Guzman L, Bunting S, Peale FVJr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 2002; 99(15): 9656–9661

    Article  CAS  PubMed  Google Scholar 

  178. 178.

    Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT. Hypoxia an. VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Sur. 2002; 109(7): 2384–2397

    Article  Google Scholar 

  179. 179.

    Zelzer E, McLean W, Ng YS, Fukai N, Reginato AM, Lovejoy S, D’Amore PA, Olsen BR. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Developmen. 2002; 129(8): 1893–1904

    CAS  Google Scholar 

  180. 180.

    Cui F, Wang X, Liu X, Dighe AS, Balian G, Cui Q. VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells. Growth Factor. 2010; 28(5): 306–317

    Article  CAS  Google Scholar 

  181. 181.

    Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A. Histone H4-related osteogenic growth peptide(OGP): a novel circulating stimulator of osteoblastic activity. EMBO J 1992; 11(5): 1867–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, Chorev M, Bab I. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10–14)] and attenuation of activation by cAMP. J Cell Bioche. 2001; 81(4): 594–603

    Article  CAS  Google Scholar 

  183. 183.

    An G, Xue Z, Zhang B, Deng QK, Wang YS, Lv SC. Expressing osteogenic growth peptide in the rabbit bone mesenchymal stem cells increased alkaline phosphatase activity and enhanced the collagen accumulation. Eur Rev Med Pharmacol Sci 2014; 18(11): 1618–1624

    CAS  PubMed  Google Scholar 

  184. 184.

    Brager MA, Patterson MJ, Connolly JF, Nevo Z. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Re. 2000; 18(1): 133–139

    Article  CAS  Google Scholar 

  185. 185.

    Shuqiang M, Kunzheng W, Xiaoqiang D, Wei W, Mingyu Z, Daocheng W. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits. J Plast Reconstr Aesthet Sur. 2008; 61(12): 1558–1560

    Article  Google Scholar 

  186. 186.

    Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermitten. PTH. Bon. 2007; 40(6): 1434–1446

    Article  CAS  Google Scholar 

  187. 187.

    Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, Seki A, Sun YX, Yamamoto T. Human parathyroid hormone(1–34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bon. 2007; 40(6): 1475–1482

    Article  CAS  Google Scholar 

  188. 188.

    Komatsu DE, Brune KA, Liu H, Schmidt AL, Han B, Zeng QQ, Yang X, Nunes JS, Lu Y, Geiser AG, M. YL, Wolos JA, Westmore MS, Sato M. Longitudinal in vivo analysis of the region-specific efficacy of parathyroid hormone in a rat cortical defect model. Endocrinolog. 2009; 150(4): 1570–1579

    Article  CAS  Google Scholar 

  189. 189.

    Jung RE, Cochran DL, Domken O, Seibl R, Jones AA, Buser D, Hammerle CH. The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res 2007; 18(3): 319–325

    Article  PubMed  Google Scholar 

  190. 190.

    Kaback LA, Soung Y, Naik A, Geneau G, Schwarz EM, Rosier RN, O’Keefe RJ, Drissi H. Teriparatide(1–34 human PTH) regulation of osterix during fracture repair. J Cell Bioche. 2008; 105(1): 219–226

    Article  CAS  Google Scholar 

  191. 191.

    Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, García-Hernández PA, Recknor CP, Einhorn TA, Dalsky GP, Mitlak BH, Fierlinger A, Lakshmanan MC. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Re. 2010; 25(2): 404–414

    Article  CAS  Google Scholar 

  192. 192.

    Reynolds DG, Shaikh S, Papuga MO, Lerner AL, O’Keefe RJ, Schwarz EM, Awad HA. muCT-based measurement of cortical bone graft-to-host union. J Bone Miner Res 2009; 24(5): 899–907

    Article  PubMed  Google Scholar 

  193. 193.

    Manton KJ, Leon DFM, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cell. 2007; 25(11): 2845–2854

    Article  CAS  Google Scholar 

  194. 194.

    Choi YJ, Lee JY, Park JH, Park JB, Suh JS, Choi YS, Lee SJ, Chung CP, Park YJ. The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 2010; 31(28): 7226–7238

    Article  CAS  PubMed  Google Scholar 

  195. 195.

    Lee JY, Choo JE, Park HJ, Park JB, Lee SC, Jo I, Lee SJ, Chung CP, Park YJ. Injectable gel with synthetic collagen-binding peptide for enhanced osteogenesis in vitro and in vivo. Biochem Biophys Res Commun 2007; 357(1): 68–74

    Article  CAS  PubMed  Google Scholar 

  196. 196.

    Yewle JN, Puleo DA, Bachas LG. Bifunctional bisphosphonates for deliverin. PTH(1–34) to bone mineral with enhanced bioactivity. Biomaterial. 2013; 34(12): 3141–3149

    Article  CAS  Google Scholar 

  197. 197.

    Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 1999; 15(1): 19–32

    Article  CAS  PubMed  Google Scholar 

  198. 198.

    Lo KW, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med 2012; 7(4): 535–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Tai IC, Wang YH, Chen CH, Chuang SC, Chang JK, Ho ML. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation. Int J Nanomedicine 2015; 10: 5881–5894

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Ruiz-Gaspa S, Nogues X, Enjuanes A, Monllau JC, Blanch J, Carreras R, Mellibovsky L, Grinberg D, Balcells S, Díez-Perez A, Pedro-Botet J. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cell Bioche. 2007; 101(6): 1430–1438

    Article  CAS  Google Scholar 

  201. 201.

    Moriyama Y, Ayukawa Y, Ogino Y, Atsuta I, Todo M, Takao Y, Koyano K. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: a rodent study. Acta Biomate. 2010; 6(4): 1610–1618

    Article  CAS  Google Scholar 

  202. 202.

    Lo KW, Ulery BD, Kan HM, Ashe KM, Laurencin CT. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med 2014; 8(9): 728–736

    Article  CAS  PubMed  Google Scholar 

  203. 203.

    Balmayor ER. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015; 94: 13–27

    Article  CAS  PubMed  Google Scholar 

  204. 204.

    Park KW, Waki H, Kim WK, Davies BS, Young SG, Parhami F, Tontonoz P. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Bio. 2009; 29(14): 3905–3914

    Article  CAS  Google Scholar 

  205. 205.

    Zhao J, Ohba S, Shinkai M, Chung UI, Nagamune T. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2- dependent manner. Biochem Biophys Res Commu. 2008; 369(2): 444–448

    Article  CAS  Google Scholar 

  206. 206.

    Nakajima K, Komiyama Y, Hojo H, Ohba S, Yano F, Nishikawa N, Ihara S, Aburatani H, Takato T, Chung UI. Enhancement of bone formation ex vivo and in vivo by a helioxanthin-derivative. Biochem Biophys Res Commun 2010; 395(4): 502–508

    Article  CAS  PubMed  Google Scholar 

  207. 207.

    Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrino. 2016; 12(4): 203–221

    Article  CAS  Google Scholar 

  208. 208.

    Wu X, Ding S, Ding Q, Gray NS, Schultz PG. A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 2002; 124(49): 14520–14521

    Article  CAS  Google Scholar 

  209. 209.

    Corcoran RB, Scott MP. Oxysterols stimulat. Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci US. 2006; 103(22): 8408–8413

    Article  CAS  Google Scholar 

  210. 210.

    James AW. Review of signaling pathways governin. MSC osteogenic and adipogenic differentiation. Scientifica(Cairo. 2013; 2013: 684736

    Google Scholar 

  211. 211.

    Sinha S, Chen JK. Purmorphamine activates th. Hedgehog pathway by targeting Smoothened. Nat Chem Bio. 2006; 2(1): 29–30

    Article  CAS  Google Scholar 

  212. 212.

    Gellynck K, Shah R, Parkar M, Young A, Buxton P, Brett P. Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bon. 2013; 57(2): 405–412

    Article  CAS  Google Scholar 

  213. 213.

    Amantea CM, Kim WK, Meliton V, Tetradis S, Parhami F. Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Bioche. 2008; 105(2): 424–436

    Article  CAS  Google Scholar 

  214. 214.

    Aghaloo TL, Amantea CM, Cowan CM, Richardson JA, Wu BM, Parhami F, Tetradis S. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J Orthop Re. 2007; 25(11): 1488–1497

    Article  CAS  Google Scholar 

  215. 215.

    Stappenbeck F, Xiao W, Epperson M, Riley M, Priest A, Huang D, Nguyen K, Jung ME, Thies RS, Farouz F. Novel oxysterols activate the Hedgehog pathway and induce osteogenesis. Bioorg Med Chem Let. 2012; 22(18): 5893–5897

    Article  CAS  Google Scholar 

  216. 216.

    Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, van Rijn L, Gaspar C, Fodde R, Janssen F, van Blitterswijk C, de Boer J. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci USA 2008; 105(20): 7281–7286

    Article  PubMed  Google Scholar 

  217. 217.

    Lo KWH, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Me. 2012; 6(1): 40–48

    Article  CAS  Google Scholar 

  218. 218.

    Lo KW, Kan HM, Gagnon KA, Laurencin CT. One-day treatment of small molecule 8-bromo-cycli. AMP analogue induces cellbased VEGF production for in vitro angiogenesis and osteoblastic differentiation. J Tissue Eng Regen Me. 2016; 10(10): 867–875

    Article  CAS  Google Scholar 

  219. 219.

    Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 458(7237): 524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Petrie Aronin CE, Sefcik LS, Tholpady SS, Tholpady A, Sadik KW, Macdonald TL, Peirce SM, Wamhoff BR, Lynch KR, Ogle RC, Botchwey EA. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng Part. 2010; 16(6): 1801–1809

    Article  CAS  Google Scholar 

  221. 221.

    Petrie Aronin CE, Shin SJ, Naden KB, Rios PDJr, Sefcik LS, Zawodny SR, Bagayoko ND, Cui Q, Khan Y, Botchwey EA. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterial. 2010; 31(25): 6417–6424

    Article  CAS  Google Scholar 

  222. 222.

    Gellynck K, Neel EA, Li H, Mardas N, Donos N, Buxton P, Young AM. Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomater 2011; 7(6): 2672–2677

    Article  CAS  PubMed  Google Scholar 

  223. 223.

    Qi Y, Zhao T, Yan W, Xu K, Shi Z, Wang J. Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model. Cytotherap. 2013; 15(1): 44–56

    Article  CAS  Google Scholar 

  224. 224.

    Maeda Y, Hojo H, Shimohata N, Choi S, Yamamoto K, Takato T, Chung UI, Ohba S. Bone healing by sterilizable calcium phosphate tetrapods eluting osteogenic molecules. Biomaterial. 2013; 34(22): 5530–5537

    Article  CAS  Google Scholar 

  225. 225.

    Ohba S, Nakajima K, Komiyama Y, Kugimiya F, Igawa K, Itaka K, Moro T, Nakamura K, Kawaguchi H, Takato T, Chung UI. A novel osteogenic helioxanthin-derivative acts in. BMP-dependent manner. Biochem Biophys Res Commu. 2007; 357(4): 854–860

    Article  CAS  Google Scholar 

  226. 226.

    Chatterjea A, LaPointe VL, Alblas J, Chatterjea S, van Blitterswijk CA, de Boer J. Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. J Cell Mol Me. 2014; 18(1): 134–142

    Article  CAS  Google Scholar 

  227. 227.

    Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M. Small players ruling the hard game: siRNA in bone regeneration. J Bone Miner Re. 2016; 31(3): 475–487

    Article  CAS  Google Scholar 

  228. 228.

    Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, Zhang Q, Salem AK. Effects of glucocorticoid receptor small interferin. RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part. 2012; 18(7–8): 775–784

    Article  CAS  Google Scholar 

  229. 229.

    Wang Y, Tran KK, Shen H, Grainger DW. Selective local delivery o. RANK siRNA to bone phagocytes using bone augmentation biomaterials. Biomaterial. 2012; 33(33): 8540–8547

    Article  CAS  Google Scholar 

  230. 230.

    Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Re. 2015; 30(2): 286–296

    Article  CAS  Google Scholar 

  231. 231.

    Zhang Y, Wei L, Miron RJ, Zhang Q, Bian Z. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d. J Dent Re. 2014; 93(11): 1095–1100

    Article  CAS  Google Scholar 

  232. 232.

    Jackson AL, Linsley PS. Recognizing and avoiding siRNA offtarget effects for target identification and therapeutic application. Nat Rev Drug Discov 2010; 9(1): 57–67

    Article  CAS  Google Scholar 

  233. 233.

    Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injur. 2011; 42(6): 556–561

    Article  Google Scholar 

  234. 234.

    Ozdemir T, Higgins AM, Brown JL. Osteoinductive biomaterial geometries for bone regenerative engineering. Curr Pharm Des 2013; 19(19): 3446–3455

    Article  CAS  PubMed  Google Scholar 

  235. 235.

    Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL. Highstrength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 2012; 109(20): 7699–7704

    Article  PubMed  Google Scholar 

  236. 236.

    O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterial. 2005; 26(4): 433–441

    Article  CAS  Google Scholar 

  237. 237.

    Sicchieri LG, Crippa GE, de Oliveira PT, Beloti MM, Rosa AL. Pore size regulates cell and tissue interactions wit. PLGA-CaP scaffolds used for bone engineering. J Tissue Eng Regen Me. 2012; 6(2): 155–162

    Article  CAS  Google Scholar 

  238. 238.

    Zajac AL, Discher DE. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Curr Opin Cell Biol 2008; 20(6): 609–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Yousefi AM, Hoque ME, Prasad RG, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res. 2015; 103(7): 2460–2481

    Article  CAS  Google Scholar 

  240. 240.

    Chapanian R, Amsden BG. Combined and sequential delivery of bioactiv. VEGF165 and HGF from poly(trimethylene carbonate) based photo-cross-linked elastomers. J Control Releas. 2010; 143(1): 53–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51673029, 81330043, and 81071499), Beijing Talent Fund (No. 2016000021223ZK34), and another fund (No. PXM2018_026275_000001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Tian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Huang, Y., Ma, C. et al. Current advances for bone regeneration based on tissue engineering strategies. Front. Med. 13, 160–188 (2019). https://doi.org/10.1007/s11684-018-0629-9

Download citation

Keywords

  • bone tissue engineering
  • stem cell
  • bone scaffold
  • growth factor
  • bone regeneration