Advertisement

Frontiers of Medicine

, Volume 12, Issue 3, pp 249–261 | Cite as

NKT cells in liver diseases

  • Shasha Zhu
  • Huimin Zhang
  • Li Bai
Review

Abstract

Natural killer T cells are innate-like and tissue-resident lymphocytes, which recognize lipid antigens and are enriched in the liver. Natural killer T cells play important roles in infections, tumors, autoimmune diseases, and metabolic diseases. In this study, we summarize recent findings on biology of natural killer T cells and their roles in hepatitis B virus and hepatitis C virus infection, autoimmune liver diseases, alcoholic liver disease, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Controversial results from previous studies are discussed, and indicate the dynamic alteration in the role of natural killer T cells during the progression of liver diseases, which might be caused by changes in natural killer T subsets, factors skewing cytokine responses, and intercellular crosstalk between natural killer T cells and CD1d-expressing cells or bystander cells.

Keywords

natural killer T cells hepatitis B virus and hepatitis C virus infection autoimmune liver diseases alcoholic liver disease nonalcoholic fatty liver disease hepatocellular carcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Work in the authors’ laboratory was supported by National Natural Science Foundation of China (Nos. 91542203, 31470859, and 81771671), National Key R&D Program of China (No. 2017YFA0505300), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA12030208), the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M. Predominant expression of invariant Vα14+ TCRa chain in NK1.1+ T cell populations. Int Immunol 1995; 7(7): 1157–1161PubMedCrossRefGoogle Scholar
  2. 2.
    Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. Recognition of a lipid antigen by CD1-restricted aβ+ T cells. Nature 1994; 372(6507): 691–694PubMedCrossRefGoogle Scholar
  3. 3.
    Godfrey DI, Hammond KJL, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today 2000; 21 (11): 573–583PubMedCrossRefGoogle Scholar
  4. 4.
    Dascher CC, Brenner MB. Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 2003; 24(8): 412–418PubMedCrossRefGoogle Scholar
  5. 5.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol 2004; 4(3): 231–237PubMedCrossRefGoogle Scholar
  6. 6.
    Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. CD1d-mediated recognition of an a-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998; 188(8): 1521–1528PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol 2010; 11(3): 197–206PubMedCrossRefGoogle Scholar
  8. 8.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25(1): 297–336PubMedCrossRefGoogle Scholar
  9. 9.
    Hammond KJL, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI. NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999; 29(11): 3768–3781PubMedCrossRefGoogle Scholar
  10. 10.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 2003; 9(5): 582–588PubMedCrossRefGoogle Scholar
  11. 11.
    Sakuishi K, Oki S, Araki M, Porcelli SA, Miyake S, Yamamura T. Invariant NKT cells biased for IL-5 production act as crucial regulators of inflammation. J Immunol 2007; 179(6): 3452–3462PubMedCrossRefGoogle Scholar
  12. 12.
    Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 2009; 9(1): 28–38PubMedCrossRefGoogle Scholar
  13. 13.
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25(1): 297–336PubMedCrossRefGoogle Scholar
  14. 14.
    Hegde S, Chen X, Keaton JM, Reddington F, Besra GS, Gumperz JE. NKT cells direct monocytes into a DC differentiation pathway. J Leukoc Biol 2007; 81(5): 1224–1235PubMedCrossRefGoogle Scholar
  15. 15.
    Kitamura H, Ohta A, Sekimoto M, Sato M, Iwakabe K, Nakui M, Yahata T, Meng H, Koda T, Nishimura S, Kawano T, Taniguchi M, Nishimura T. a-Galactosylceramide induces early B-cell activation through IL-4 production by NKT cells. Cell Immunol 2000; 199 (1): 37–42PubMedCrossRefGoogle Scholar
  16. 16.
    Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003; 171(10): 5140–5147PubMedCrossRefGoogle Scholar
  17. 17.
    Eberl G, MacDonald HR. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000; 30(4): 985–992PubMedCrossRefGoogle Scholar
  18. 18.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M. CD1drestricted and TCR-mediated activation of Va14 NKT cells by glycosylceramides. Science 1997; 278(5343): 1626–1629PubMedCrossRefGoogle Scholar
  19. 19.
    Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol 2010; 11(3): 197–206PubMedCrossRefGoogle Scholar
  20. 20.
    Godfrey DI, Pellicci DG, Patel O, Kjer-Nielsen L, McCluskey J, Rossjohn J. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin Immunol 2010; 22(2): 61–67PubMedCrossRefGoogle Scholar
  21. 21.
    Savage PB, Teyton L, Bendelac A. Glycolipids for natural killer T cells. Chem Soc Rev 2006; 35(9): 771–779PubMedCrossRefGoogle Scholar
  22. 22.
    Xia C, Yao Q, Schümann J, Rossy E, Chen W, Zhu L, Zhang W, De Libero G, Wang PG. Synthesis and biological evaluation of a-galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorg Med Chem Lett 2006; 16(8): 2195–2199PubMedCrossRefGoogle Scholar
  23. 23.
    Stanic AK, De Silva AD, Park JJ, Sriram V, Ichikawa S, Hirabyashi Y, Hayakawa K, Van Kaer L, Brutkiewicz RR, Joyce S. Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci USA 2003; 100(4): 1849–1854PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brigl M, Tatituri RVV, Watts G F M, Bhowruth V, Leadbetter EA, Barton N, Cohen NR, Hsu FF, Besra GS, Brenner MB. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 2011; 208(6): 1163–1177PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Nagarajan NA, Kronenberg M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 2007; 178(5): 2706–2713PubMedCrossRefGoogle Scholar
  26. 26.
    Tupin E, Kinjo Y, Kronenberg M. The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 2007; 5(6): 405–417PubMedCrossRefGoogle Scholar
  27. 27.
    Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KCF, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M, Platt F, Trottein F. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 2007; 27(4): 597–609PubMedCrossRefGoogle Scholar
  28. 28.
    Godfrey DI, Rossjohn J. New ways to turn on NKT cells. J Exp Med 2011; 208(6): 1121–1125PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hermans IF, Silk JD, Gileadi U, Masri SH, Shepherd D, Farrand KJ, Salio M, Cerundolo V. Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 2007; 178(5): 2721–2729PubMedCrossRefGoogle Scholar
  30. 30.
    Baxevanis CN, Gritzapis AD, Papamichail M. In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J Immunol 2003; 171(6): 2953–2959PubMedCrossRefGoogle Scholar
  31. 31.
    Grela F, Aumeunier A, Bardel E, Van LP, Bourgeois E, Vanoirbeek J, Leite-de-Moraes M, Schneider E, Dy M, Herbelin A, Thieblemont N. The TLR7 agonist R848 alleviates allergic inflammation by targeting invariant NKT cells to produce IFN-γ. J Immunol 2011; 186(1): 284–290PubMedCrossRefGoogle Scholar
  32. 32.
    Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413(6855): 531–534PubMedCrossRefGoogle Scholar
  33. 33.
    Yu KOA, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N, Arias I, Miyake S, Yamamura T, Chang YT, Besra GS, Porcelli SA. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of a-galactosylceramides. Proc Natl Acad Sci USA 2005; 102(9): 3383–3388PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Goff RD, Gao Y, Mattner J, Zhou D, Yin N, Cantu C 3rd, Teyton L, Bendelac A, Savage PB. Effects of lipid chain lengths in a-galactosylceramides on cytokine release by natural killer T cells. J Am Chem Soc 2004; 126(42): 13602–13603PubMedCrossRefGoogle Scholar
  35. 35.
    McCarthy C, Shepherd D, Fleire S, Stronge VS, Koch M, Illarionov PA, Bossi G, Salio M, Denkberg G, Reddington F, Tarlton A, Reddy BG, Schmidt RR, Reiter Y, Griffiths GM, van der Merwe PA, Besra GS, Jones EY, Batista FD, Cerundolo V. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 2007; 204(5): 1131–1144PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bai L, Constantinides MG, Thomas SY, Reboulet R, Meng F, Koentgen F, Teyton L, Savage PB, Bendelac A. Distinct APCs explain the cytokine bias of α-galactosylceramide variants in vivo. J Immunol 2012; 188(7): 3053–3061PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Oki S, Chiba A, Yamamura T, Miyake S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 2004; 113 (11): 1631–1640PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hua J, Ma X,Webb T, Potter JJ, Oelke M, Li Z. Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease. J Lipid Res 2010; 51(7): 1696–1703PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Xie D, Zhu S, Bai L. Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci 2016; 59(12): 1290–1296PubMedCrossRefGoogle Scholar
  40. 40.
    Apostolou I, Takahama Y, Belmant C, Kawano T, Huerre M, Marchal G, Cui J, Taniguchi M, Nakauchi H, Fournie JJ, Kourilsky P, Gachelin G. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci USA 1999; 96(9): 5141–5146PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chackerian A, Alt J, Perera V, Behar SM. Activation of NKT cells protects mice from tuberculosis. Infect Immun 2002; 70(11): 6302–6309PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Opasawatchai A, Matangkasombut P. iNKT cells and their potential lipid ligands during viral infection. Front Immunol 2015; 6: 378PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 2001; 167(7): 4046–4050PubMedCrossRefGoogle Scholar
  44. 44.
    Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J Immunol 1999; 163(5): 2387–2391PubMedGoogle Scholar
  45. 45.
    Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001; 413(6855): 531–534PubMedCrossRefGoogle Scholar
  46. 46.
    Singh AK, Wilson MT, Hong S, Olivares-Villagómez D, Du C, Stanic AK, Joyce S, Sriram S, Koezuka Y, Van Kaer L. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001; 194(12): 1801–1811PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang H, Xue R, Zhu S, Fu S, Chen Z, Zhou R, Tian Z, Bai L. M2-specific reduction of CD1d switches NKT cell-mediated immune responses and triggers metaflammation in adipose tissue. Cell Mol Immunol 2017 Apr 10. [Epub ahead of print] https://doi.org/ 10.1038/cmi.2017.11Google Scholar
  48. 48.
    Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, Barr KA, Meng F, Luster AD, Bendelac A. PLZF induces an intravascular surveillance program mediated by longlived LFA-1-ICAM-1 interactions. J Exp Med 2011; 208(6): 1179–1188PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Slauenwhite D, Johnston B. Regulation of NKT cell localization in homeostasis and infection. Front Immunol 2015; 6: 255PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3(4): e113PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    King IL, Amiel E, Tighe M, Mohrs K, Veerapen N, Besra G, Mohrs M, Leadbetter EA. The mechanism of splenic invariant NKT cell activation dictates localization in vivo. J Immunol 2013; 191(2): 572–582PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Barral P, Sánchez-Niño MD, van Rooijen N, Cerundolo V, Batista FD. The location of splenic NKT cells favours their rapid activation by blood-borne antigen. EMBO J 2012; 31(10): 2378–2390PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A, Lester C, Besra G, Vomhof-Dekrey EE, Tighe M, Koay HF, Godfrey DI, Leadbetter EA, Sant’Angelo DB, von Andrian U, Brenner MB. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue. Nat Immunol 2015; 16(1): 85–95PubMedCrossRefGoogle Scholar
  54. 54.
    Scanlon ST, Thomas SY, Ferreira CM, Bai L, Krausz T, Savage PB, Bendelac A. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med 2011; 208(10): 2113–2124PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Constantinides MG, Bendelac A. Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol 2013; 25(2): 161–167PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Doisne JM, Becourt C, Amniai L, Duarte N, Le Luduec JB, Eberl G, Benlagha K. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J Immunol 2009; 183(3): 2142–2149PubMedCrossRefGoogle Scholar
  57. 57.
    Gapin L. Development of invariant natural killer T cells. Curr Opin Immunol 2016; 39: 68–74PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kim EY, Lynch L, Brennan PJ, Cohen NR, Brenner MB. The transcriptional programs of iNKT cells. Semin Immunol 2015; 27 (1): 26–32PubMedCrossRefGoogle Scholar
  59. 59.
    Scanlon ST, Thomas SY, Ferreira CM, Bai L, Krausz T, Savage PB, Bendelac A. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J Exp Med 2011; 208(10): 2113–2124PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Terashima A, Watarai H, Inoue S, Sekine E, Nakagawa R, Hase K, Iwamura C, Nakajima H, Nakayama T, Taniguchi M. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med 2008; 205(12): 2727–2733PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, Tsutsumi A, Taniguchi M, Sumida T. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med 2008; 22(3): 369–374PubMedGoogle Scholar
  62. 62.
    Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P, Zhu M, Iwakura Y, Savage PB, DeKruyff RH, Shore SA, Umetsu DT. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 2008; 205(2): 385–393PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, Wong CH, Schneider E, Dy M, Leite-de-Moraes MC. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 2007; 204(5): 995–1001PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014; 124(9): 3725–3740PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dashtsoodol N, Shigeura T, Aihara M, Ozawa R, Kojo S, Harada M, Endo TA, Watanabe T, Ohara O, Taniguchi M. Alternative pathway for the development of Va14+ NKT cells directly from CD4CD8thymocytes that bypasses the CD4+CD8+ stage. Nat Immunol 2017; 18(3): 274–282PubMedCrossRefGoogle Scholar
  66. 66.
    Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 2002; 195(5): 637–641PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Doherty G, Golden-Mason L. NKT cells from normal and tumorbearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171(10): 1775–1779 PMID:12902477PubMedGoogle Scholar
  68. 68.
    Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13(2): 101–117PubMedCrossRefGoogle Scholar
  69. 69.
    O’Reilly V, Zeng SG, Bricard G, Atzberger A, Hogan AE, Jackson J, Feighery C, Porcelli SA, Doherty DG. Distinct and overlapping effector functions of expanded human CD4+, CD8+ and CD4CD8invariant natural killer T cells. PLoS One 2011; 6 (12): e28648PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13(3): 337–346PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gao B. Basic liver immunology. Cell Mol Immunol 2016; 13(3): 265–266PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lan P, Fan Y, Zhao Y, Lou X, Monsour HP, Zhang X, Choi Y, Dou Y, Ishii N, Ghobrial RM, Xiao X, Li XC. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest 2017; 127(6): 2222–2234PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fahey S, Dempsey E, Long A. The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol 2014; 11(1): 25–40PubMedCrossRefGoogle Scholar
  74. 74.
    Wang X, Dong A, Xiao J, Zhou X, Mi H, Xu H, Zhang J, Wang B. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice. Cell Mol Immunol 2016; 13(6): 850–861PubMedCrossRefGoogle Scholar
  75. 75.
    Yang Y, Han Q, Hou Z, Zhang C, Tian Z, Zhang J. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell Mol Immunol 2017; 14(5): 465–475PubMedCrossRefGoogle Scholar
  76. 76.
    Guidotti LG, Chisari FV. Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 2006; 1(1): 23–61PubMedCrossRefGoogle Scholar
  77. 77.
    Huang LM, Lu CY, Chen DS. Hepatitis B virus infection, its sequelae, and prevention by vaccination. Curr Opin Immunol 2011; 23(2): 237–243PubMedCrossRefGoogle Scholar
  78. 78.
    Guy CS, Mulrooney-Cousins PM, Churchill ND, Michalak TI. Intrahepatic expression of genes affiliated with innate and adaptive immune responses immediately after invasion and during acute infection with woodchuck hepadnavirus. J Virol 2008; 82(17): 8579–8591PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fisicaro P, Valdatta C, Boni C, Massari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Missale G, Ferrari C. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009; 58(7): 974–982PubMedCrossRefGoogle Scholar
  80. 80.
    Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 2000; 32(5): 1117–1124PubMedCrossRefGoogle Scholar
  81. 81.
    Jiang X, Zhang M, Lai Q, Huang X, Li Y, Sun J, Abbott WG, Ma S, Hou J. Restored circulating invariant NKT cells are associated with viral control in patients with chronic hepatitis B. PLoS One 2011; 6(12): e28871PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 2004; 173(2): 1417–1425PubMedCrossRefGoogle Scholar
  83. 83.
    Zhu H, Zhang Y, Liu H, Zhang Y, Kang Y, Mao R, Yang F, Zhou D, Zhang J. Preserved function of circulating invariant natural killer T cells in patients with chronic hepatitis B virus infection. Medicine (Baltimore) 2015; 94(24): e961CrossRefGoogle Scholar
  84. 84.
    Ito H, Ando K, Ishikawa T, Nakayama T, Taniguchi M, Saito K, Imawari M, Moriwaki H, Yokochi T, Kakumu S, Seishima M. Role of Vα14+ NKT cells in the development of hepatitis B virusspecific CTL: activation of Vα14+ NKT cells promotes the breakage of CTL tolerance. Int Immunol 2008; 20(7): 869–879PubMedCrossRefGoogle Scholar
  85. 85.
    Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000; 192(7): 921–930PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zeissig S, Murata K, Sweet L, Publicover J, Hu Z, Kaser A, Bosse E, Iqbal J, Hussain MM, Balschun K, Röcken C, Arlt A, Günther R, Hampe J, Schreiber S, Baron JL, Moody DB, Liang TJ, Blumberg RS. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 2012; 18(7): 1060–1068PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Woltman AM, Ter Borg MJ, Binda RS, Sprengers D, von Blomberg BM, Scheper RJ, Hayashi K, Nishi N, Boonstra A, van der Molen R, Janssen HL. a-Galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial. Antivir Ther 2009; 14(6): 809–818PubMedCrossRefGoogle Scholar
  88. 88.
    van der Vliet HJ, Molling JW, von Blomberg BM, Kölgen W, Stam AG, de Gruijl TD, Mulder CJ, Janssen HL, Nishi N, van den Eertwegh AJ, Scheper RJ, van Nieuwkerk CJ. Circulating Vα24+Vβ11+ NKT cell numbers and dendritic cell CD1d expression in hepatitis C virus infected patients. Clin Immunol 2005; 114(2): 183–189PubMedCrossRefGoogle Scholar
  89. 89.
    Inoue M, Kanto T, Miyatake H, Itose I, Miyazaki M, Yakushijin T, Sakakibara M, Kuzushita N, Hiramatsu N, Takehara T, Kasahara A, Hayashi N. Enhanced ability of peripheral invariant natural killer T cells to produce IL-13 in chronic hepatitis C virus infection. J Hepatol 2006; 45(2): 190–196PubMedCrossRefGoogle Scholar
  90. 90.
    Deignan T, Curry MP, Doherty DG, Golden-Mason L, Volkov Y, Norris S, Nolan N, Traynor O, McEntee G, Hegarty JE, O’Farrelly C. Decrease in hepatic CD56+ T cells and Vα24+ natural killer T cells in chronic hepatitis C viral infection. J Hepatol 2002; 37(1): 101–108PubMedCrossRefGoogle Scholar
  91. 91.
    Lucas M, Gadola S, Meier U, Young NT, Harcourt G, Karadimitris A, Coumi N, Brown D, Dusheiko G, Cerundolo V, Klenerman P. Frequency and phenotype of circulating Vα24/Vβ11 doublepositive natural killer T cells during hepatitis C virus infection. J Virol 2003; 77(3): 2251–2257PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Werner JM, Heller T, Gordon AM, Sheets A, Sherker AH, Kessler E, Bean KS, Stevens M, Schmitt J, Rehermann B. Innate immune responses in hepatitis C virus-exposed healthcare workers who do not develop acute infection. Hepatology 2013; 58(5): 1621–1631PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Miyaki E, Hiraga N, Imamura M, Uchida T, Kan H, Tsuge M, Abe-Chayama H, Hayes CN, Makokha GN, Serikawa M, Aikata H, Ochi H, Ishida Y, Tateno C, Ohdan H, Chayama K. Interferon a treatment stimulates interferon γ expression in type I NKT cells and enhances their antiviral effect against hepatitis C virus. PLoS One 2017; 12(3): e0172412PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Exley MA, He Q, Cheng O,Wang RJ, Cheney CP, Balk SP, Koziel MJ. Cutting edge: compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 2002; 168(4): 1519–1523PubMedCrossRefGoogle Scholar
  95. 95.
    Durante-Mangoni E, Wang R, Shaulov A, He Q, Nasser I, Afdhal N, Koziel MJ, Exley MA. Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1dreactive T cells. J Immunol 2004; 173(3): 2159–2166PubMedCrossRefGoogle Scholar
  96. 96.
    Li M, Zhou ZH, Sun XH, Zhang X, Zhu XJ, Jin SG, Jiang Y, Gao YT, Li CZ, Gao YQ. The dynamic changes of circulating invariant natural killer T cells during chronic hepatitis B virus infection. Hepatol Int 2016; 10(4): 594–601PubMedCrossRefGoogle Scholar
  97. 97.
    Wang H, Feng D, Park O, Yin S, Gao B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-g. Hepatology 2013; 58(4): 1474–1485PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hirschfield GM, Heathcote EJ, Gershwin ME. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology 2010; 139(5): 1481–1496PubMedCrossRefGoogle Scholar
  99. 99.
    Liaskou E, Hirschfield GM, Gershwin ME. Mechanisms of tissue injury in autoimmune liver diseases. Semin Immunopathol 2014; 36(5): 553–568PubMedCrossRefGoogle Scholar
  100. 100.
    Kita H, Naidenko OV, Kronenberg M, Ansari AA, Rogers P, He XS, Koning F, Mikayama T, Van De Water J, Coppel RL, Kaplan M, Gershwin ME. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002; 123(4): 1031–1043PubMedCrossRefGoogle Scholar
  101. 101.
    Tsuneyama K, Yasoshima M, Harada K, Hiramatsu K, Gershwin ME, Nakanuma Y. Increased CD1d expression on small bile duct epithelium and epithelioid granuloma in livers in primary biliary cirrhosis. Hepatology 1998; 28(3): 620–623PubMedCrossRefGoogle Scholar
  102. 102.
    Sebode M, Schramm C. Natural killer T cells: novel players in biliary disease? Hepatology 2015; 62(4): 999–1000PubMedCrossRefGoogle Scholar
  103. 103.
    Chuang YH, Lian ZX, Yang GX, Shu SA, Moritoki Y, Ridgway WM, Ansari AA, Kronenberg M, Flavell RA, Gao B, Gershwin ME. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008; 47(2): 571–580PubMedCrossRefGoogle Scholar
  104. 104.
    Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, Lin CS, Jobin C, Brand S, Sotlar K, Wada K, Katayama K, Nakajima A, Mizuguchi H, Kawasaki K, Nagata K, Müller W, Snapper SB, Schreiber S, Kaser A, Zeissig S, Blumberg RS. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509(7501): 497–502PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wu SJ, Yang YH, Tsuneyama K, Leung PSC, Illarionov P, Gershwin ME, Chuang YH. Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis. Hepatology 2011; 53 (3): 915–925PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mattner J, Savage PB, Leung P, Oertelt SS, Wang V, Trivedi O, Scanlon ST, Pendem K, Teyton L, Hart J, Ridgway WM, Wicker LS, Gershwin ME, Bendelac A. Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3(5): 304–315PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Am J Gastroenterol 2010; 105(1): 14–32, quiz 33PubMedCrossRefGoogle Scholar
  108. 108.
    Beier JI, McClain CJ. Mechanisms and cell signaling in alcoholic liver disease. Biol Chem 2010; 391(11): 1249–1264PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 2000; 106(7): 867–872PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A. Chronic alcohol consumption is associated with changes in the distribution, immunophenotype, and the inflammatory cytokine secretion profile of circulating dendritic cells. Alcohol Clin Exp Res 2007; 31(5): 846–854PubMedCrossRefGoogle Scholar
  111. 111.
    Lau AH, Abe M, Thomson AW. Ethanol affects the generation, cosignaling molecule expression, and function of plasmacytoid and myeloid dendritic cell subsets in vitro and in vivo. J Leukoc Biol 2006; 79(5): 941–953PubMedCrossRefGoogle Scholar
  112. 112.
    Stadlbauer V, Mookerjee RP, Wright GA, Davies NA, Jürgens G, Hallström S, Jalan R. Role of Toll-like receptors 2, 4, and 9 in mediating neutrophil dysfunction in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol 2009; 296(1): G15–G22PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang H, Meadows GG. Chronic alcohol consumption in mice increases the proportion of peripheral memory T cells by homeostatic proliferation. J Leukoc Biol 2005; 78(5): 1070–1080PubMedCrossRefGoogle Scholar
  114. 114.
    Lemmers A, Moreno C, Gustot T, Maréchal R, Degré D, Demetter P, de Nadai P, Geerts A, Quertinmont E, Vercruysse V, Le Moine O, Devière J. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 2009; 49(2): 646–657PubMedCrossRefGoogle Scholar
  115. 115.
    Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G. Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-a during alcohol consumption. Gastroenterology 2004; 126(5): 1387–1399PubMedCrossRefGoogle Scholar
  116. 116.
    Mathews S, Feng D, Maricic I, Ju C, Kumar V, Gao B. Invariant natural killer T cells contribute to chronic-plus-binge ethanolmediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 2016; 13(2): 206–216PubMedCrossRefGoogle Scholar
  117. 117.
    Maricic I, Sheng H, Marrero I, Seki E, Kisseleva T, Chaturvedi S, Molle N, Mathews SA, Gao B, Kumar V. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology 2015; 61(4): 1357–1369PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Buschard K, Hansen AK, Jensen K, Lindenbergh-Kortleve DJ, de Ruiter LF, Krohn TC, Hufeldt MR, Vogensen FK, Aasted B, Osterbye T, Roep BO, de Haar C, Nieuwenhuis EE. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice. PLoS One 2011; 6 (4): e17931PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, Tian Z. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. J Hepatol 2015; 62 (6): 1311–1318PubMedCrossRefGoogle Scholar
  120. 120.
    Bertola A, Park O, Gao B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology 2013; 58(5): 1814–1823PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Jeong D, Ahn S, Oh S J, Ahn J Y, Lee S H, Chung D H. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages. J Immunol 2014; 192Google Scholar
  122. 122.
    Mikolasevic I, Milic S, Turk Wensveen T, Grgic I, Jakopcic I, Stimac D, Wensveen F, Orlic L. Nonalcoholic fatty liver disease— a multisystem disease? World J Gastroenterol 2016; 22(43): 9488–9505PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hart KM, Fabre T, Sciurba JC, Gieseck RL 3rd, Borthwick LA, Vannella KM, Acciani TH, de Queiroz Prado R, Thompson RW, White S, Soucy G, Bilodeau M, Ramalingam TR, Arron JR, Shoukry NH, Wynn TA. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci Transl Med 2017; 9(396): eaal3694PubMedCrossRefGoogle Scholar
  124. 124.
    Parekh S, Anania FA. Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 2007; 132(6): 2191–2207PubMedCrossRefGoogle Scholar
  125. 125.
    Bhattacharjee J, Kirby M, Softic S, Miles L, Salazar-Gonzalez RM, Shivakumar P, Kohli R. Hepatic natural killer T-cell and CD8+ Tcell signatures in mice with nonalcoholic steatohepatitis. Hepatol Commun 2017; 1(4): 299–310PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179–185PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860–867PubMedCrossRefGoogle Scholar
  128. 128.
    Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010; 7(4): 195–203PubMedCrossRefGoogle Scholar
  129. 129.
    Guebre-Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage. Hepatology 2000; 31(3): 633–640PubMedCrossRefGoogle Scholar
  130. 130.
    Li Z, Lin H, Yang S, Diehl AM. Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the innate immune system. Gastroenterology 2002; 123(4): 1304–1310PubMedCrossRefGoogle Scholar
  131. 131.
    Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM. Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest 2007; 87(9): 927–937PubMedCrossRefGoogle Scholar
  132. 132.
    Tang ZH, Liang S, Potter J, Jiang X, Mao HQ, Li Z. Tim-3/ galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease. J Immunol 2013; 190(4): 1788–1796PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 2005; 42(4): 880–885PubMedCrossRefGoogle Scholar
  134. 134.
    Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 2008; 49(5): 821–830PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kremer M, Hines IN, Milton RJ, Wheeler MD. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis. Hepatology 2006; 44(1): 216–227PubMedCrossRefGoogle Scholar
  136. 136.
    Kremer M, Thomas E, Milton RJ, Perry AW, van Rooijen N, Wheeler MD, Zacks S, Fried M, Rippe RA, Hines IN. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 2010; 51(1): 130–141PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Li Z, Oben JA, Yang S, Lin H, Stafford EA, Soloski MJ, Thomas SA, Diehl AM. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis. Hepatology 2004; 40(2): 434–441PubMedCrossRefGoogle Scholar
  138. 138.
    Miyazaki Y, Iwabuchi K, Iwata D, Miyazaki A, Kon Y, Niino M, Kikuchi S, Yanagawa Y, Kaer LV, Sasaki H, Onoé K. Effect of high fat diet on NKT cell function and NKT cell-mediated regulation of Th1 responses. Scand J Immunol 2008; 67(3): 230–237PubMedCrossRefGoogle Scholar
  139. 139.
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, Balk SP, O’Shea D, O’Farrelly C, Exley MA. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 2012; 37(3): 574–587PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Elinav E, Pappo O, Sklair-Levy M, Margalit M, Shibolet O, Gomori M, Alper R, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y. Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping. J Pathol 2006; 209(1): 121–128PubMedCrossRefGoogle Scholar
  141. 141.
    Wu L, Parekh VV, Gabriel CL, Bracy DP, Marks-Shulman PA, Tamboli RA, Kim S, Mendez-Fernandez YV, Besra GS, Lomenick JP, Williams B, Wasserman DH, Van Kaer L. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci USA 2012; 109(19): E1143–E1152PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Satoh M, Andoh Y, Clingan CS, Ogura H, Fujii S, Eshima K, Nakayama T, Taniguchi M, Hirata N, Ishimori N, Tsutsui H, Onoé K, Iwabuchi K. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue inflammation, steatohepatitis and insulin resistance. PLoS One 2012; 7(2): e30568PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, Pereira TA, Chen Y, Mi Z, Kuo PC, Choi SS, Guy CD, Abdelmalek MF, Diehl AM. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61(9): 1323–1329PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Syn WK, Oo YH, Pereira TA, Karaca GF, Jung Y, Omenetti A, Witek RP, Choi SS, Guy CD, Fearing CM, Teaberry V, Pereira FE, Adams DH, Diehl AM. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 2010; 51 (6): 1998–2007PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Wolf MJ, Adili A, Piotrowitz K, Abdullah Z, Boege Y, Stemmer K, Ringelhan M, Simonavicius N, Egger M, Wohlleber D, Lorentzen A, Einer C, Schulz S, Clavel T, Protzer U, Thiele C, Zischka H, Moch H, Tschöp M, Tumanov AV, Haller D, Unger K, Karin M, Kopf M, Knolle P, Weber A, Heikenwalder M. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 2014; 26(4): 549–564PubMedCrossRefGoogle Scholar
  146. 146.
    Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liverinfiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2009; 21(6): 673–680PubMedCrossRefGoogle Scholar
  147. 147.
    Adler M, Taylor S, Okebugwu K, Yee H, Fielding C, Fielding G, Poles M. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J Gastroenterol 2011; 17(13): 1725–1731PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90PubMedCrossRefGoogle Scholar
  149. 149.
    Li S, Ye L, Yu X, Xu B, Li K, Zhu X, Liu H, Wu X, Kong L. Hepatitis C virus NS4B induces unfolded protein response and endoplasmic reticulum overload response-dependent NF-kB activation. Virology 2009; 391(2): 257–264PubMedCrossRefGoogle Scholar
  150. 150.
    Hernaez R, El-Serag HB. Hepatocellular carcinoma surveillance: the road ahead. Hepatology 2017; 65(3): 771–773PubMedCrossRefGoogle Scholar
  151. 151.
    Miyagi T, Takehara T, Tatsumi T, Kanto T, Suzuki T, Jinushi M, Sugimoto Y, Sasaki Y, Hori M, Hayashi N. CD1d-mediated stimulation of natural killer T cells selectively activates hepatic natural killer cells to eliminate experimentally disseminated hepatoma cells in murine liver. Int J Cancer 2003; 106(1): 81–89PubMedCrossRefGoogle Scholar
  152. 152.
    Margalit M, Shibolet O, Klein A, Elinav E, Alper R, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y. Suppression of hepatocellular carcinoma by transplantation of ex-vivo immune-modulated NKT lymphocytes. Int J Cancer 2005; 115(3): 443–449PubMedCrossRefGoogle Scholar
  153. 153.
    Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I, Taniguchi M, Fujisawa T, Nakayama T. A phase I-II study of a-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 2009; 182(4): 2492–2501PubMedCrossRefGoogle Scholar
  154. 154.
    Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, Fujisawa T. A phase I study of a-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 2005; 11(5): 1910–1917PubMedCrossRefGoogle Scholar
  155. 155.
    Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M, Motohashi S, Nakayama T, Okamoto Y. Induction of NKT cellspecific immune responses in cancer tissues after NKT celltargeted adoptive immunotherapy. Clin Immunol 2011; 138(3): 255–265PubMedCrossRefGoogle Scholar
  156. 156.
    Uchida T, Horiguchi S, Tanaka Y, Yamamoto H, Kunii N, Motohashi S, Taniguchi M, Nakayama T, Okamoto Y. Phase I study of a-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 2008; 57(3): 337–345PubMedCrossRefGoogle Scholar
  157. 157.
    Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM. A phase I study of the natural killer T-cell ligand a-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002; 8 (12): 3702–3709PubMedGoogle Scholar
  158. 158.
    Heczey A, Liu D, Tian G, Courtney AN, Wei J, Marinova E, Gao X, Guo L, Yvon E, Hicks J, Liu H, Dotti G, Metelitsa LS. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 2014; 124(18): 2824–2833PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Tian G, Courtney AN, Jena B, Heczey A, Liu D, Marinova E, Guo L, Xu X, Torikai H, Mo Q, Dotti G, Cooper LJ, Metelitsa LS. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest 2016; 126(6): 2341–2355PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Dhodapkar KM, Cirignano B, Chamian F, Zagzag D, Miller DC, Finlay JL, Steinman RM. Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer 2004; 109(6): 893–899PubMedCrossRefGoogle Scholar
  161. 161.
    Motohashi S, Kobayashi S, Ito T, Magara KK, Mikuni O, Kamada N, Iizasa T, Nakayama T, Fujisawa T, Taniguchi M. Preserved IFN-a production of circulating Vα24 NKT cells in primary lung cancer patients. Int J Cancer 2002; 102(2): 159–165PubMedCrossRefGoogle Scholar
  162. 162.
    Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol 2011; 140 (2): 167–176PubMedCrossRefGoogle Scholar
  163. 163.
    Xiao YS, Gao Q, Xu XN, Li YW, Ju MJ, Cai MY, Dai CX, Hu J, Qiu SJ, Zhou J, Fan J. Combination of intratumoral invariant natural killer T cells and interferon-γ is associated with prognosis of hepatocellular carcinoma after curative resection. PLoS One 2013; 8(8): e70345PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ Vα24/Vβ11 invariant NKT cells in intrahepatic malignant tumors. J Immunol 2009; 182(8): 5140–5151PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Innovation Center for Cell Signaling NetworkHefei National Laboratory for Physical Sciences at MicroscaleHefeiChina

Personalised recommendations