Skip to main content

Clinical characterization and diagnosis of cystic fibrosis through exome sequencing in Chinese infants with Bartter-syndrome-like hypokalemia alkalosis


Cystic fibrosis (CF) is a fatal autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CF is characterized by recurrent pulmonary infection with obstructive pulmonary disease. CF is common in the Caucasian population but is rare in the Chinese population. The symptoms of early-stage CF are often untypical and may sometimes manifest as Bartter syndrome (BS)-like hypokalemic alkalosis. Therefore, the ability of doctors to differentiate CF from BS-like hypokalemic alkalosis in Chinese infants is a great challenge in the timely and accurate diagnosis of CF. In China, sporadic CF has not been diagnosed in children younger than three years of age to date. Three infants, who were initially admitted to our hospital over the period of June 2013 to September 2014 with BS-like hypokalemic alkalosis, were diagnosed with CF through exome sequencing and sweat chloride measurement. The compound heterozygous mutations of the CFTR gene were detected in two infants, and a homozygous missense mutation was found in one infant. Among the six identified mutations, two are novel point mutations (c.1526G > C and c.3062C > T) that are possibly pathogenic. The three infants are the youngest Chinese patients to have been diagnosed with sporadic CF at a very early stage. Follow-up examination showed that all of the cases remained symptom-free after early intervention, indicating the potential benefit of very early diagnosis and timely intervention in children with CF. Our results demonstrate the necessity of distinguishing CF from BS in Chinese infants with hypokalemic alkalosis and the significant diagnostic value of powerful exome sequencing for rare genetic diseases. Furthermore, our findings expand the CFTR mutation spectrum associated with CF.

This is a preview of subscription content, access via your institution.


  1. 1.

    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245(4922): 1066–1073

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Dawson KP, Frossard PM. The geographic distribution of cystic fibrosis mutations gives clues about population origins. Eur J Pediatr 2000; 159(7): 496–499

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Yamashiro Y, Shimizu T, Oguchi S, Shioya T, Nagata S, Ohtsuka Y. The estimated incidence of cystic fibrosis in Japan. J Pediatr Gastroenterol Nutr 1997; 24(5): 544–547

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Shen Y, Liu J, Zhong L, Mogayzel PJ Jr, Zeitlin PL, Sosnay PR, Zhao S. Clinical phenotypes and genotypic spectrum of cystic fibrosis in Chinese children. J Pediatr 2016; 171:269–276.e1

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Xu BP, Wang H, Zhao YH, Liu J, Yao Y, Feng XL, Shen KL. Molecular diagnosis of two Chinese cystic fibrosis children and literature review. Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2016; 54 (5): 344–348 (in Chinese)

    CAS  Google Scholar 

  6. 6.

    Xie Y, Huang X, Liang Y, Xu L, Pei Y, Cheng Y, Zhang L, Tang W. A new compound heterozygous CFTR mutation in a Chinese family with cystic fibrosis. Clin Respir J 2017; 11(6):696–702

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Wang PL, Jing JY, Shen HH. Retrospective analysis on twenty Chinese cases of cystic fibrosis. Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2008; 46(8): 634–636 (in Chinese)

    Google Scholar 

  8. 8.

    Macek M Jr, Mercier B, Macková A, Miller PW, Hamosh A, Férec C, Cutting GR. Sensitivity of the denaturing gradient gel electrophoresis technique in detection of known mutations and novel Asian mutations in the CFTR gene. Hum Mutat 1997; 9(2): 36–47

    Article  Google Scholar 

  9. 9.

    Chen HJ, Lin SP, Lee HC, Chen CP, Chiu NC, Hung HY, Chern SR, Chuang CK. Cystic fibrosis with homozygous R553X mutation in a Taiwanese child. J Hum Genet 2005; 50(12): 674–678

    Article  PubMed  Google Scholar 

  10. 10.

    Wagner JA, Vassilakis A, Yee K, Li M, Hurlock G, Krouse ME, Moss RB, Wine JJ. Two novel mutations in a cystic fibrosis patient of Chinese origin. Hum Genet 1999; 104(6): 511–515

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Tian X, Liu Y, Yang J, Wang H, Liu T, Xu W, Li X, Zhu Y, Xu KF, Zhang X. p.G970D is the most frequent CFTR mutation in Chinese patients with cystic fibrosis. Hum Genome Var 2016; 3: 15063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Liu JR, Peng Y, Zhao YH,Wang W, Guo Y, He JX, Zhao SY, Jiang ZF. Clinical manifestations and gene analysis of 2 Chinese children with cystic fibrosis. Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2012; 50(11): 829–833 (in Chinese)

    Google Scholar 

  13. 13.

    Li N, Pei P, Bu DF, He B,Wang GF. A novel CFTR mutation found in a Chinese patient with cystic fibrosis. Chin Med J (Engl) 2006; 119(2): 103–109

    Article  CAS  Google Scholar 

  14. 14.

    Li N, He B, Wang GF, Tang XY. A case report of cystic fibrosis and review of 16 cases of cystic fibrosis in Chinese patients. Chin J Tuberc Respir Dis (Zhonghua Jie He He Hu Xi Za Zhi) 2003; 26(9): 559–562 (in Chinese)

    Google Scholar 

  15. 15.

    Li HX, Mao WJ, Chen JY, Zheng MF, Ye SG, He YJ, Liu F. Analysis of curative effect of pulmonary lobectomy on atelectasis after lung transplantation. Organ Transplant (Qi Guan Yi Zhi), 2014. 5(1): 24–27, 31 (in Chinese)

    Google Scholar 

  16. 16.

    Liu Y, Wang L, Tian X, Xu KF, Xu W, Li X, Yue C, Zhang P, Xiao Y, Zhang X. Characterization of gene mutations and phenotypes of cystic fibrosis in Chinese patients. Respirology 2015; 20(2): 312–318

    Article  PubMed  Google Scholar 

  17. 17.

    Cremonesi L, Ferrari M, Belloni E, Magnani C, Seia M, Ronchetto P, Rady M, Russo MP, Romeo G, Devoto M. Four new mutations of the CFTR gene (541delC, R347H, R352Q, E585X) detected by DGGE analysis in Italian CF patients, associated with different clinical phenotypes. Hum Mutat 1992; 1(4): 314–319

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Lee KH, Ryu JK, Yoon WJ, Lee JK, Kim YT, Yoon YB. Mutation analysis of SPINK1 and CFTR gene in Korean patients with alcoholic chronic pancreatitis. Dig Dis Sci 2005; 50(10): 1852–1856

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Sheppard DN, Travis SM, Ishihara H, Welsh MJ. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 1996; 271(25): 14995–15001

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Rodríguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 1998; 12(4): 315–327

    Article  PubMed  Google Scholar 

  21. 21.

    Kessler WR, Andersen DH. Heat prostration in fibrocystic disease of the pancreas and other conditions. Pediatrics 1951; 8(5): 648–656

    CAS  PubMed  Google Scholar 

  22. 22.

    Scurati-Manzoni E, Fossali EF, Agostoni C, Riva E, Simonetti GD, Zanolari-Calderari M, Bianchetti MG, Lava SA. Electrolyte abnormalities in cystic fibrosis: systematic review of the literature. Pediatr Nephrol 2014; 29(6): 1015–1023

    Article  PubMed  Google Scholar 

  23. 23.

    Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol 2012; 23(2): 204–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Mei-Zahav M, Durie P, Zielenski J, Solomon M, Tullis E, Tsui LC, Corey M. The prevalence and clinical characteristics of cystic fibrosis in South Asian Canadian immigrants. Arch Dis Child 2005; 90(7): 675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Callaghan BD, Hoo AF, Dinwiddie R, Balfour-Lynn IM, Carr SB. Growth and lung function in Asian patients with cystic fibrosis. Arch Dis Child 2005; 90(10): 1029–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mattar AC, Leone C, Rodrigues JC, Adde FV. Sweat conductivity: an accurate diagnostic test for cystic fibrosis? J Cyst Fibros 2014; 13 (5): 528–533

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, Howenstine M, McColley SA, Rock M, Rosenfeld M, Sermet-Gaudelus I, Southern KW, Marshall BC, Sosnay PR. Diagnosis of cystic fibrosis: consensus guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4–S15.e1

    Article  PubMed  Google Scholar 

Download references


We thank Ms. Li Wang for her help with analyzing the sequencing results.

Author information



Corresponding author

Correspondence to Jianhua Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Yang, F., He, Y. et al. Clinical characterization and diagnosis of cystic fibrosis through exome sequencing in Chinese infants with Bartter-syndrome-like hypokalemia alkalosis. Front. Med. 12, 550–558 (2018).

Download citation


  • cystic fibrosis
  • pseudo-Bartter syndrome
  • hypokalemic alkalosis
  • CFTR gene
  • mutations
  • infants
  • diagnosis