Advertisement

Frontiers of Medicine

, Volume 11, Issue 2, pp 266–276 | Cite as

Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty

  • Rahim Ullah
  • Yan Su
  • Yi Shen
  • Chunlu Li
  • Xiaoqin Xu
  • Jianwei Zhang
  • Ke Huang
  • Naveed Rauf
  • Yang He
  • Jingjing Cheng
  • Huaping Qin
  • Yu-Dong Zhou
  • Junfen Fu
Research Article

Abstract

Childhood obesity and obesity-related metabolic complications are induced by a high-fat postnatal diet. The lack of a suitable animal model, however, remains a considerable challenge in obesity studies. In the current study, we provided high-fat diet (HFD) to dams during lactation and to pups after weaning. We also developed a novel model of C57BL/6J mouse pups with HFD-induced postnatal obesity. Results showed that feeding with HFD induces fat deposition and obesity in pups. Furthermore, HFD more potently increased the body weight (BW) of male than female pups. HFD-fed female pups were obese, underwent precocious puberty, and showed increased kisspeptin expression in the hypothalamus. However, parental obesity and precocious puberty exerted no synergistic effects on the HFD-induced postnatal weight gain and puberty onset of the pups. Interestingly, some HFD-fed litters with normal BW also exhibited precocious puberty. This finding suggested that diet composition but not BW triggers puberty onset. Our model suggests good construction validity of obesity and precocious puberty. Furthermore, our model can also be used to explore the mutual interactions between diet–induced postnatal childhood obesity and puberty.

Keywords

postnatal HFD feeding obesity kisspeptin HPG axis precocious puberty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 81570759 and 81270938), National Key Research and Development Programme of China (No. 2016YFC1305301), Zhejiang Provincial Key Science and Technology Project (No. 2014C03045-2), Key Disciplines of Medicine (Innovation discipline,11-CX24) and the Fundamental Research Funds for the Central Universities (2017XZZX001-01).

References

  1. 1.
    James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res 2001; 9(S11): 228S–233SCrossRefPubMedGoogle Scholar
  2. 2.
    Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 2013; 9(1): 13–27CrossRefPubMedGoogle Scholar
  3. 3.
    Mayes J, Watson G. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004; 5(4): 197–216CrossRefPubMedGoogle Scholar
  4. 4.
    Pasquali R, Pelusi C, Genghini S, Cacciari M, Gambineri A. Obesity and reproductive disorders in women. Hum Reprod Update 2003; 9(4): 359–372CrossRefPubMedGoogle Scholar
  5. 5.
    Robker RL. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology 2008; 15(2): 115–121CrossRefPubMedGoogle Scholar
  6. 6.
    Hussain MA, Abogresha NM, Hassan R, Tamany DA, Lotfy M. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats. Arch Med Sci 2016; 12(4): 906–914CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Colmenares A, Gunczler P, Lanes R. Higher prevalence of obesity and overweight without an adverse metabolic profile in girls with central precocious puberty compared to girls with early puberty, regardless of GnRH analogue treatment. Int J Pediatr Endocrinol 2014; 2014(1): 1–7CrossRefGoogle Scholar
  8. 8.
    Dai YL, Fu JF, Liang L, Gong CX, Xiong F, Luo FH, Liu GL, Chen SK. Association between obesity and sexual maturation in Chinese children: a muticenter study. Int J Obes 2014; 38(10): 1312–1316CrossRefGoogle Scholar
  9. 9.
    Guyenet SJ, Schwartz MW. Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 2012; 97(3): 745–755CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93(1): 359–404CrossRefPubMedGoogle Scholar
  11. 11.
    Sánchez-Garrido MA, Castellano JM, Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, Leon S, Romero-Ruiz A, Diéguez C, Pinilla L, Tena-Sempere M. Metabolic programming of puberty: sexually dimorphic responses to early nutritional challenges. Endocrinology 2013; 154(9): 3387–3400CrossRefPubMedGoogle Scholar
  12. 12.
    Brill DS, Moenter SM. Androgen receptor antagonism and an insulin sensitizer block the advancement of vaginal opening by high-fat diet in mice. Biol Reprod 2009; 81(6): 1093–1098CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am J Physiol Regul Integr Comp Physiol 1992; 262(6): R1025–R1032CrossRefGoogle Scholar
  14. 14.
    Sullivan EL, Nousen EK, Chamlou KA. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 2014; 123: 236–242CrossRefPubMedGoogle Scholar
  15. 15.
    Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, Shankar K. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 2014; 9(1): e84209CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Benatti RO, Melo AM, Borges FO, Ignacio-Souza LM, Simino LAP, Milanski M, Velloso LA, Torsoni MA, Torsoni AS. Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 2014; 111(12): 2112–2122CrossRefPubMedGoogle Scholar
  17. 17.
    Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006; 291(3): R768–R778CrossRefPubMedGoogle Scholar
  18. 18.
    Demmelmair H, Kuhn A, Dokoupil K, Hegele V, Sauerwald T, Koletzko B. Human lactation: oxidation and maternal transfer of dietary 13C-labelled a-linolenic acid into human milk. Isotopes Environ Health Stud 2016; 52(3): 270–280CrossRefPubMedGoogle Scholar
  19. 19.
    Neville MC, Picciano MF. Regulation of milk lipid secretion and composition. Annu Rev Nutr 1997; 17(1): 159–184CrossRefPubMedGoogle Scholar
  20. 20.
    Ohta T, Toriniwa Y, Ryumon N, Inaba N, Hirao T, Yamanaka S, Maeno T, Sakakibara W, Sumikawa M, Chiba K, Nakamura A, Miyajima K, Fatchiyah F, Yamada T.Maternal high-fat diet promotes onset of diabetes in rat offspring. Anim Sci J 2017; 88(1): 149–155Google Scholar
  21. 21.
    Rolls BA, Gurr MI, van Duijvenvoorde PM, Rolls BJ, Rowe EA. Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition. Physiol Behav 1986; 38(2): 185–190CrossRefPubMedGoogle Scholar
  22. 22.
    Saben JL, Bales ES, Jackman MR, Orlicky D, MacLean PS, McManaman JL. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One 2014; 9(5): e98066CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wahlig JL, Bales ES, Jackman MR, Johnson GC, McManaman JL, MacLean PS. Impact of high-fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation. Obesity (Silver Spring) 2012; 20(1): 65–75CrossRefGoogle Scholar
  24. 24.
    Ge F, Walewski JL, Torghabeh MH, Lobdell H IV, Hu C, Zhou S, Dakin G, Pomp A, Bessler M, Schrope B, Ude-Welcome A, Inabnet WB, Feng T, Carras-Terzian E, Anglade D, Ebel FE, Berk PD. Facilitated long chain fatty acid uptake by adipocytes remains upregulated relative to BMI for more than a year after major bariatric surgical weight loss. Obesity (Silver Spring) 2016; 24(1): 113–122CrossRefGoogle Scholar
  25. 25.
    Scaglioni S, Verduci E, Salvioni M, Bruzzese MG, Radaelli G, Zetterström R, Riva E, Agostoni C. Plasma long-chain fatty acids and the degree of obesity in Italian children. Acta Paediatr 2006; 95(8): 964–969CrossRefPubMedGoogle Scholar
  26. 26.
    Walewski JL, Ge F, Gagner M, Inabnet WB, Pomp A, Branch AD, Berk PD. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2010; 20(1): 93–107CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou SL, Kiang CL, Stump D, Bradbury M, Isola LM. Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem 1997; 272(13): 8830–8835CrossRefPubMedGoogle Scholar
  28. 28.
    Berk PD, Zhou SL, Bradbury M, Stump D, Kiang CL, Isola LM. Regulated membrane transport of free fatty acids in adipocytes: role in obesity and non-insulin dependent diabetes mellitus. Trans Am Clin Climatol Assoc 1997; 108: 26–40PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kojima S, Catavero C, Rinaman L. Maternal high-fat diet increases independent feeding in pre-weanling rat pups. Physiol Behav 2016; 157: 237–245CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gao M, Ma Y, Liu D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS One 2015; 10(3): e0119784CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Breslin WL, Strohacker K, Carpenter KC, Esposito L, McFarlin BK. Weight gain in response to high-fat feeding in CD-1 male mice. Lab Anim 2010; 44(3): 231–237CrossRefPubMedGoogle Scholar
  32. 32.
    Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, Wang F, Hull RL, Boyko EJ, Retzlaff BM, Walden CE, Knopp RH, Kahn SE. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Distinct metabolic effects of two fat compartments. Diabetes 2002; 51(4): 1005–1015PubMedGoogle Scholar
  33. 33.
    Goodpaster BH, Leland Thaete F, Simoneau JA, Kelley DE. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes 1997; 46(10): 1579–1585CrossRefPubMedGoogle Scholar
  34. 34.
    Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 2006; 444(7121): 881–887CrossRefPubMedGoogle Scholar
  35. 35.
    Tena-Sempere M. Keeping puberty on time: novel signals and mechanisms involved. Curr Top Dev Biol 2013; 105: 299–329CrossRefPubMedGoogle Scholar
  36. 36.
    Vernarelli JA, Mitchell DC, Rolls BJ, Hartman TJ. Dietary energy density is associated with obesity and other biomarkers of chronic disease in US adults. Eur J Nutr 2015; 54(1): 59–65CrossRefPubMedGoogle Scholar
  37. 37.
    Crino M, Sacks G, Vandevijvere S, Swinburn B, Neal B. The influence on population weight gain and obesity of the macronutrient composition and energy density of the food supply. Curr Obes Rep 2015; 4(1): 1–10CrossRefPubMedGoogle Scholar
  38. 38.
    Iossa S, Lionetti L, Mollica MP, Crescenzo R, Botta M, Barletta A, Liverini G. Effect of high-fat feeding on metabolic efficiency and mitochondrial oxidative capacity in adult rats. Br J Nutr 2003; 90(5): 953–960CrossRefPubMedGoogle Scholar
  39. 39.
    Cai D, Liu T. Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann N Y Acad Sci 2011; 1243(1): E1–E39CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cai D. Neuroinflammation and neurodegeneration in overnutritioninduced diseases. Trends Endocrinol Metab 2013; 24(1): 40–47CrossRefPubMedGoogle Scholar
  41. 41.
    Ailhaud G, Guesnet P. Fatty acid composition of fats is an early determinant of childhood obesity: a short review and an opinion. Obes Rev 2004; 5(1): 21–26CrossRefPubMedGoogle Scholar
  42. 42.
    Berk PD, Zhou S, Bradbury MW. Increased hepatocellular uptake of long chain fatty acids occurs by different mechanisms in fatty livers due to obesity or excess ethanol use, contributing to development of steatohepatitis in both settings. Trans Am Clin Climatol Assoc 2005; 116: 335–345PubMedPubMedCentralGoogle Scholar
  43. 43.
    Slavin JL. Dietary fiber and body weight. Nutrition 2005; 21(3): 411–418CrossRefPubMedGoogle Scholar
  44. 44.
    Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energyrestricted, high-protein, low-fat diet relative to a conventional highcarbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr 2005; 81(6): 1298–1306CrossRefPubMedGoogle Scholar
  45. 45.
    Mahgoub O, Lu CD, Early RJ. Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Rumin Res 2000; 37(1–2): 35–42CrossRefPubMedGoogle Scholar
  46. 46.
    Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr 2012; 3(4): 491–498CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Garg N, Thakur S, Alex McMahan C, Adamo ML. High fat diet induced insulin resistance and glucose intolerance are genderspecific in IGF-1R heterozygous mice. Biochem Biophys Res Commun 2011; 413(3): 476–480CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Barron AM, Rosario ER, Elteriefi R, Pike CJ. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: implications for Alzheimer’s disease. PLoS One 2013; 8(10): e78554CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wells JCK, Marphatia AA, Cole TJ, McCoy D. Associations of economic and gender inequality with global obesity prevalence: understanding the female excess. Soc Sci Med 2012; 75(3): 482–490CrossRefPubMedGoogle Scholar
  50. 50.
    Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305(11): R1215–R1267CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J Nutr 2003; 133(4): 1081–1087CrossRefPubMedGoogle Scholar
  52. 52.
    Aldhahi W, Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 2003; 3(4): 293–298CrossRefPubMedGoogle Scholar
  53. 53.
    Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4(4): 263–273CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Horumon To Rinsho 2006; 64(4): 355–365Google Scholar
  55. 55.
    Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444(7121): 847–853CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60(03): 329–339CrossRefPubMedGoogle Scholar
  57. 57.
    Watanabe G, Terasawa E. In vivo release of luteinizing hormone releasing hormone increases with puberty in the female rhesus monkey. Endocrinology 1989; 125(1): 92–99CrossRefPubMedGoogle Scholar
  58. 58.
    Terasawa E, Guerriero KA, Plant TM. Kisspeptin and puberty in mammals. Adv Exp Med Biol 2013; 784: 253–273CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Apter D, Butzow TL, Laughlin GA, Yen SSC. Gonadotropinreleasing- hormone pulse-generator activity during pubertal transition in girls—pulsatile and diurnal patterns of circulating gonadotropins. J Clin Endocrinol Metab 1993; 76(4): 940–949PubMedGoogle Scholar
  60. 60.
    Castellano JM, Tena-Sempere M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin Ther Targets 2016; 20(10): 1181–1193CrossRefPubMedGoogle Scholar
  61. 61.
    Ullah R, Shen Y, Zhou YD, Huang K, Fu JF, Wahab F, Shahab M. Expression and actions of GnIH and its orthologs in vertebrates: current status and advanced knowledge. Neuropeptides 2016; 59: 9–20CrossRefPubMedGoogle Scholar
  62. 62.
    d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL, Aparicio S, Colledge WH. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 2007; 104(25): 10714–10719CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MBL, Crowley WF Jr, Aparicio S, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349(17): 1614–1627CrossRefPubMedGoogle Scholar
  64. 64.
    de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003; 100(19): 10972–10976CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 2007; 148(11): 5258–5267CrossRefPubMedGoogle Scholar
  66. 66.
    Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005; 102(6): 2129–2134CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab 2005; 90(12): 6609–6615CrossRefPubMedGoogle Scholar
  68. 68.
    Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320(2): 383–388CrossRefPubMedGoogle Scholar
  69. 69.
    Schally AV, Arimura A, Kastin AJ, Matsuo H, Baba Y, Redding TW, Nair RMG, Debeljuk L, White WF. Gonadotropin-releasing hormone—one polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science 1971; 173(4001): 1036–1038CrossRefPubMedGoogle Scholar
  70. 70.
    Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000; 21(5): 551–583CrossRefPubMedGoogle Scholar
  71. 71.
    Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001; 22(1): 111–151PubMedGoogle Scholar
  72. 72.
    Korhonen S, Hippeläinen M, Vanhala M, Heinonen S, Niskanen L. The androgenic sex hormone profile is an essential feature of metabolic syndrome in premenopausal women: a controlled community-based study. Fertil Steril 2003; 79(6): 1327–1334CrossRefPubMedGoogle Scholar
  73. 73.
    Barber TM, McCarthy MI, Wass JAH, Franks S. Obesity and polycystic ovary syndrome. Horumon To Rinsho 2006; 65(2): 137–145Google Scholar
  74. 74.
    Coviello AD, Legro RS, Dunaif A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006; 91(2): 492–497CrossRefPubMedGoogle Scholar
  75. 75.
    Pielecka J, Moenter SM. Effect of steroid milieu on gonadotropinreleasing hormone-1 neuron firing pattern and luteinizing hormone levels in male mice. Biol Reprod 2006; 74(5): 931–937CrossRefPubMedGoogle Scholar
  76. 76.
    Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology 2006; 147(3): 1474–1479CrossRefPubMedGoogle Scholar
  77. 77.
    Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 1998; 83(2): 582–590PubMedGoogle Scholar
  78. 78.
    Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000; 85(11): 4047–4052PubMedGoogle Scholar
  79. 79.
    Ramirez D, Sawyer CH. Advancement of puberty in the female rat by estrogen. Endocrinology 1965; 76(6): 1158–1168CrossRefPubMedGoogle Scholar
  80. 80.
    Bronson FH. Puberty in female mice is not associated with increases in either body fat or leptin. Endocrinology 2001; 142(11): 4758–4761CrossRefPubMedGoogle Scholar
  81. 81.
    Nah WH, Park MJ, Gye MC. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med 2011; 38(2): 75–81CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fu JF, Liang JF, Zhou XL, Prasad HC, Jin JH, Dong GP, Rose SR. Impact of BMI on gonadorelin-stimulated LH peak in premenarcheal girls with idiopathic central precocious puberty. Obesity (Silver Spring) 2015; 23(3): 637–643CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rahim Ullah
    • 1
    • 2
  • Yan Su
    • 1
    • 2
  • Yi Shen
    • 2
  • Chunlu Li
    • 2
  • Xiaoqin Xu
    • 1
  • Jianwei Zhang
    • 1
  • Ke Huang
    • 1
  • Naveed Rauf
    • 1
    • 2
  • Yang He
    • 2
  • Jingjing Cheng
    • 2
  • Huaping Qin
    • 2
  • Yu-Dong Zhou
    • 2
  • Junfen Fu
    • 1
  1. 1.Department of Endocrinology, Children’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang University School of MedicineHangzhouChina

Personalised recommendations