Frontiers of Medicine

, Volume 11, Issue 1, pp 48–52 | Cite as

Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia



Arthrogryposis multiplex congenita (AMC) is a rare disorder characterized by non-progressive, multiple contractures. In addition to affected extremities, patients may also present microstomia, decreased temporomandibular joint mobility. Although the etiology of AMC is unclear, any factor that decreases fetal movement is responsible for AMC. Thus, accurate diagnosis and classification are crucial to the appropriate treatment of AMC. The development of ultrasound technology has enabled prenatal diagnosis. Very early treatment is favorable, and multidisciplinary treatment is necessary to improve the function of AMC patients. Most patients require surgery to release contracture and reconstruct joints. However, perioperative care is challenging, and difficult airway is the first concern of anesthesiologists. Postoperative pulmonary complications are common and regional anesthesia is recommended for postoperative analgesia. This review on AMC is intended for anesthesiologists. Thus, we discuss the treatment and perioperative management of patients undergoing surgery, as well as the diagnosis and classification of AMC.


arthrogryposis amyoplasia distal arthrogryposis anesthesia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall JG. Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 1997; 6(3): 159–166CrossRefPubMedGoogle Scholar
  2. 2.
    Hall JG, Reed SD, Greene G. The distal arthrogryposes: delineation of new entities—review and nosologic discussion. Am J Med Genet 1982; 11(2): 185–239CrossRefPubMedGoogle Scholar
  3. 3.
    Fahy MJ, Hall JG. A retrospective study of pregnancy complications among 828 cases of arthrogryposis. Genet Couns 1990; 1(1): 3–11PubMedGoogle Scholar
  4. 4.
    Darin N, Kimber E, Kroksmark AK, Tulinius M. Multiple congenital contractures: birth prevalence, etiology, and outcome. J Pediatr 2002; 140(1): 61–67CrossRefPubMedGoogle Scholar
  5. 5.
    Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313CrossRefPubMedGoogle Scholar
  6. 6.
    Mejlachowicz D, Nolent F, Maluenda J, Ranjatoelina-Randrianaivo H, Giuliano F, Gut I, Sternberg D, Laquerrière A, Melki J. Truncating mutations of MAGEL2, a gene within the Prader-Willi locus, are responsible for severe arthrogryposis. Am J Hum Genet 2015; 97(4): 616–620CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bamshad M, van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am 2009; 91(Suppl 4): 40–46CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bamshad M, Jorde LB, Carey JC. A revised and extended classification of the distal arthrogryposes. Am J Med Genet 1996; 65(4): 277–281CrossRefPubMedGoogle Scholar
  9. 9.
    Krakowiak PA, Bohnsack JF, Carey JC, Bamshad M. Clinical analysis of a variant of Freeman-Sheldon syndrome (DA2B). Am J Med Genet 1998; 76(1): 93–98CrossRefPubMedGoogle Scholar
  10. 10.
    Stevenson DA, Carey JC, Palumbos J, Rutherford A, Dolcourt J, Bamshad MJ. Clinical characteristics and natural history of Freeman-Sheldon syndrome. Pediatrics 2006; 117(3): 754–762CrossRefPubMedGoogle Scholar
  11. 11.
    Freeman EA, Sheldon J. Cranio-carpotarsal dystrophy: undescribed congenital malformation. Arch Dis Child 1938; 13: 227–283CrossRefGoogle Scholar
  12. 12.
    Pallotta R, Ehresmann T, Fusilli P. Occurrence of Dandy-Walker anomaly in a familial case of distal arthogryposis type IIB. Am J Med Genet 2000; 95(5): 477–481CrossRefPubMedGoogle Scholar
  13. 13.
    Pallotta R, Ehresmann T, Fusilli P. Ocular findings in distal arthrogryposis. Ophthalmic Genet 2001; 22(2): 125–130CrossRefPubMedGoogle Scholar
  14. 14.
    Williams MS, Elliott CG, Bamshad MJ. Pulmonary disease is a component of distal arthrogryposis type 5. Am J Med Genet A 2007; 143A(7): 752–756CrossRefPubMedGoogle Scholar
  15. 15.
    Ramos Arroyo MA, Weaver DD, Beals RK. Congenital contractural arachnodactyly. Report of four additional families and review of literature. Clin Genet 1985; 27(6): 570–581PubMedGoogle Scholar
  16. 16.
    Viljoen D, Ramesar R, Behari D. Beals syndrome: clinical and molecular investigations in a kindred of Indian descent. Clin Genet 1991; 39(3): 181–188CrossRefPubMedGoogle Scholar
  17. 17.
    van der Linden V, Filho EL, Lins OG, van der Linden A, Aragão MF, Brainer-Lima AM, Cruz DD, Rocha MA, Sobral da Silva PF, Carvalho MD, do Amaral FJ, Gomes JA, Ribeiro De Medeiros IC, Ventura CV, Ramos RC. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 2016; 354: i3899CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tajsharghi H, Kimber E, Kroksmark AK, Jerre R, Tulinius M, Oldfors A. Embryonic myosin heavy-chain mutations cause distal arthrogryposis and developmental myosin myopathy that persists postnatally. Arch Neurol 2008; 65(8): 1083–1090CrossRefPubMedGoogle Scholar
  19. 19.
    Polizzi A, Huson SM, Vincent A. Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology 2000; 62(5): 332–341CrossRefPubMedGoogle Scholar
  20. 20.
    Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126(2): 762–778CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tajsharghi H, Kimber E, Holmgren D, Tulinius M, Oldfors A. Distal arthrogryposis and muscle weakneßs associated with a ß-tropomyosin mutation. Neurology 2007; 68(10): 772–775CrossRefPubMedGoogle Scholar
  22. 22.
    Jiang M, Zhao X, Han W, Bian C, Li X, Wang G, Ao Y, Li Y, Yi D, Zhe Y, Lo WH, Zhang X, Li J. A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet 2006; 120(2): 238–242CrossRefPubMedGoogle Scholar
  23. 23.
    Sung SS, Brassington AM, Krakowiak PA, Carey JC, Jorde LB, Bamshad M. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am J Hum Genet 2003; 73(1): 212–214CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Beck AE, McMillin MJ, Gildersleeve HI, Shively KM, Tang A, Bamshad MJ. Genotype-phenotype relationships in Freeman- Sheldon syndrome. Am J Med Genet A 2014; 164A(11): 2808–2813CrossRefPubMedGoogle Scholar
  25. 25.
    Gurnett CA, Desruisseau DM, McCall K, Choi R, Meyer ZI, Talerico M, Miller SE, Ju JS, Pestronk A, Connolly AM, Druley TE, Weihl CC, Dobbs MB. Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet 2010; 19(7): 1165–1173CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McMillin MJ, Below JE, Shively KM, Beck AE, Gildersleeve HI, Pinner J, Gogola GR, Hecht JT, Grange DK, Harris DJ, Earl DL, Jagadeesh S, Mehta SG, Robertson SP, Swanson JM, Faustman EM, Mefford HC, Shendure J, Nickerson DA, Bamshad MJ; University of Washington Center for Mendelian Genomics. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet 2013; 92(1): 150–156CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karakaya M, Heller R, Kunde V, Zimmer KP, Chao CM, Nürnberg P, Cirak S. Novel mutations in the nonselective sodium leak channel (NALCN) lead to distal arthrogryposis with increased muscle tone. Neuropediatrics 2016; 47(4): 273–277CrossRefPubMedGoogle Scholar
  28. 28.
    Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies. Arch Dis Child Fetal Neonatal Ed 2005; 90 (5): F355–F358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Filges I, Hall JG. Failure to identify antenatal multiple congenital contractures and fetal akinesia—proposal of guidelines to improve diagnosis. Prenat Diagn 2013; 33(1): 61–74CrossRefPubMedGoogle Scholar
  30. 30.
    Vila-Vives JM, Hidalgo-Mora JJ, Soler I, Rubio J, Quiroga R, Perales A. Fetal arthrogryposis secondary to a giant maternal uterine leiomyoma. Case Rep Obstet Gynecol 2012,2012: 726732PubMedPubMedCentralGoogle Scholar
  31. 31.
    Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, Konje J, Khare M. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn 2010; 30(1): 49–56PubMedGoogle Scholar
  32. 32.
    Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10-14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313CrossRefPubMedGoogle Scholar
  33. 33.
    Scott H, Hunter A, Bédard B. Non-lethal arthrogryposis multiplex congenita presenting with cystic hygroma at 13 weeks gestational age. Prenat Diagn 1999; 19(10): 966–971CrossRefPubMedGoogle Scholar
  34. 34.
    Kurjak A, Vecek N, Hafner T, Bozek T, Funduk-Kurjak B, Ujevic B. Prenatal diagnosis: what does four-dimensional ultrasound add? J Perinat Med 2002; 30(1): 57–62Google Scholar
  35. 35.
    Binkiewicz-Glinska A, Sobierajska-Rek A, Bakula S, Wierzba J, Drewek K, Kowalski IM, Zaborowska-Sapeta K. Arthrogryposis in infancy, multidisciplinary approach: case report. BMC Pediatr 2013; 13(1): 184CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Matar HE, Beirne P, Garg N. The effectiveness of the Ponseti method for treating clubfoot associated with arthrogryposis: up to 8 years follow-up. J Child Orthop 2016; 10(1): 15–18CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martin S, Tobias JD. Perioperative care of the child with arthrogryposis. Paediatr Anaesth 2006; 16(1): 31–37CrossRefPubMedGoogle Scholar
  38. 38.
    Robinson PJ. Freeman Sheldon syndrome: severe upper airway obstruction requiring neonatal tracheostomy. Pediatr Pulmonol 1997; 23(6): 457–459CrossRefPubMedGoogle Scholar
  39. 39.
    Schefels J, Wenzl TG, Merz U, Ramaekers V, Holzki J, Rudnik-Schoeneborn S, Hermanns B, Hörnchen H. Functional upper airway obstruction in a child with Freeman-Sheldon syndrome. ORL J Otorhinolaryngol Relat Spec 2002; 64(1): 53–56CrossRefPubMedGoogle Scholar
  40. 40.
    Chen A, Lai HY, Lee Y, Yang YL, Ho JS, Shyr MH. Anesthesia for Freeman-Sheldon syndrome using a folded laryngeal mask airway. Anesth Analg 2005; 101(2): 614–615CrossRefPubMedGoogle Scholar
  41. 41.
    Thomas PB, Parry MG. The difficult paediatric airway: a new method of intubation using the laryngeal mask airway, Cook airway exchange catheter and tracheal intubation fibrescope. Paediatr Anaesth 2001; 11(5): 618–621CrossRefPubMedGoogle Scholar
  42. 42.
    Kim JS, Park SY, Min SK, Kim JH, Lee SY, Moon BK. Awake nasotracheal intubation using fiberoptic bronchoscope in a pediatric patient with Freeman-Sheldon syndrome. Paediatr Anaesth 2005; 15(9): 790–792CrossRefPubMedGoogle Scholar
  43. 43.
    Sadacharam K, Ahmad M. Epidural anesthesia for labor pain and cesarean section in a parturient with arthrogryposis multiplex congenita. J Anaesthesiol Clin Pharmacol 2016; 32(3): 410–411CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ponde V, Desai AP, Shah D. Comparison of success rate of ultrasound-guided sciatic and femoral nerve block and neurostimulation in children with arthrogryposis multiplex congenita: a randomized clinical trial. Paediatr Anaesth 2013; 23(1): 74–78CrossRefPubMedGoogle Scholar
  45. 45.
    Ion T, Cook-Sather SD, Finkel RS, Cucchiaro G. Fascia iliaca block for an infant with arthrogryposis multiplex congenita undergoing muscle biopsy. Anesth Analg 2005; 100(1): 82–84CrossRefPubMedGoogle Scholar
  46. 46.
    Borazan H, Selcuk Uluer M, Sahin O, Okesli S. Regional anesthesia with a single spinal anesthesia using hyperbaric bupivacaine in a child with arthroglyposis multiplex congenita. J Anesth 2012; 26(2): 283–285CrossRefPubMedGoogle Scholar
  47. 47.
    Wood GG, Jacka MJ. Spinal hematoma following spinal anesthesia in a patient with spina bifida occulta. Anesthesiology 1997; 87(4): 983–984CrossRefPubMedGoogle Scholar
  48. 48.
    Tidmarsh MD, May AE. Epidural anaesthesia and neural tube defects. Int J Obstet Anesth 1998; 7(2): 111–114CrossRefPubMedGoogle Scholar
  49. 49.
    Hopkins PM, Ellis FR, Halsall PJ. Hypermetabolism in arthrogryposis multiplex congenital. Anaesthesia 1991; 46(5): 374–375CrossRefPubMedGoogle Scholar
  50. 50.
    Chowdhuri R, Samui S, Kundu AK. Anesthetic management of a neonate with arthrogryposis multiplex congenita for emergency laparotomy. J Anaesthesiol Clin Pharmacol 2011; 27(2): 244–246CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of AnesthesiologyPeking Union Medical College HospitalBeijingChina

Personalised recommendations