Frontiers of Medicine

, Volume 10, Issue 4, pp 481–489 | Cite as

Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice

  • Yuqin Men
  • Aizhen Zhang
  • Liwen Zhang
  • Yecheng Jin
  • Zhishuo Wang
  • Jing Zhao
  • Xiaolin Yu
  • Jian Zhang
  • Jiangang Gao
Research Article
  • 76 Downloads

Abstract

The tumor suppressor gene liver kinase B1 (LKB1), also called STK11, encodes a serine/threonine kinase. LKB1 plays crucial roles in cell differentiation, proliferation, and polarity. In this study, LKB1 conditional knockout mice (LKB1Pax2 CKO mice) were generated using Pax2-Cre mice to investigate the function of LKB1 in inner ear hair cells during early embryonic period. LKB1Pax2 CKO mice died perinatally. Immunofluorescence and scanning electron microscopy revealed that stereociliary bundles in LKB1Pax2 CKO mice were clustered and misoriented, respectively. Moreover, ectopic distribution of kinocilium bundles resulting from abnormal migration of kinocilium was observed in the mutant mice. The orientation of stereociliary bundles and the migration of kinocilia are critical indicators of planar cell polarity (PCP) of hair cells. LKB1 deficiency in LKB1Pax2 CKO mice thus disrupted hair cell planar polarity during embryonic development. Our results suggest that LKB1 is required in PCP formation in cochlear hair cells in mice.

Keywords

LKB1 stereociliary bundles kinocilium planar cell polarity hearing mice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holley MC. The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10(19): 1269–1282CrossRefPubMedGoogle Scholar
  2. 2.
    Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5(7): 489–498CrossRefPubMedGoogle Scholar
  3. 3.
    Petit C, Richardson GP. Linking genes underlying deafness to hairbundle development and function. Nat Neurosci 2009; 12(6): 703–710CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ueyama T, Sakaguchi H, Nakamura T, Goto A, Morioka S, Shimizu A, Nakao K, Hishikawa Y, Ninoyu Y, Kassai H, Suetsugu S, Koji T, Fritzsch B, Yonemura S, Hisa Y, Matsuda M, Aiba A, Saito N. Maintenance of stereocilia and apical junctional complexes by Cdc42 in cochlear hair cells. J Cell Sci 2014; 127(Pt 9): 2040–2052CrossRefPubMedGoogle Scholar
  5. 5.
    Perrin BJ, Strandjord DM, Narayanan P, Henderson DM, Johnson KR, Ervasti JM. ß-Actin and fascin-2 cooperate to maintain stereocilia length. J Neurosci 2013; 33(19): 8114–8121CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Francis SP, Krey JF, Krystofiak ES, Cui R, Nanda S, Xu W, Kachar B, Barr-Gillespie PG, Shin JB. A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35(5): 1999–2014CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26(57): 7825–7832CrossRefPubMedGoogle Scholar
  8. 8.
    Baas AF, Smit L, Clevers H. LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 2004; 14(6): 312–319CrossRefPubMedGoogle Scholar
  9. 9.
    Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Mäkelä TP. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 2001; 293(5533): 1323–1326CrossRefPubMedGoogle Scholar
  10. 10.
    Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N, Li Y, Liew CW, Ho RC, Hirshman MF, Kulkarni RN, Kahn CR, Goodyear LJ. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 2006; 26(22): 8217–8227CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ikeda Y, Sato K, Pimentel DR, Sam F, Shaw RJ, Dyck JR, Walsh K. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem 2009; 284(51): 35839–35849CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ohashi K, Ouchi N, Higuchi A, Shaw RJ, Walsh K. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 2010; 285(29): 22291–22298CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sun G, Reynolds R, Leclerc I, Rutter GA. RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis. Dis Model Mech 2011; 4(2): 193–202CrossRefPubMedGoogle Scholar
  14. 14.
    Men Y, Zhang A, Li H, Zhang T, Jin Y, Li H, Zhang J, Gao J. LKB1 is required for the development and maintenance of stereocilia in inner ear hair cells in mice. PLoS ONE 2015; 10(8): e0135841CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol 1967; Suppl 220: 1–44Google Scholar
  16. 16.
    Mates M. Atlas of anatomy: general anatomy and musculoskeletal system. Occup Ther Health Care 2008; 22(4): 76–77CrossRefPubMedGoogle Scholar
  17. 17.
    Barald KF, Kelley MW. From placode to polarization: new tunes in inner ear development. Development 2004; 131(17): 4119–4130CrossRefPubMedGoogle Scholar
  18. 18.
    Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126(8): 1581–1590PubMedGoogle Scholar
  19. 19.
    Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002; 129(10): 2495–2505PubMedGoogle Scholar
  20. 20.
    Wang J, Mark S, Zhang X, Qian D, Yoo SJ, Radde-Gallwitz K, Zhang Y, Lin X, Collazo A, Wynshaw-Boris A, Chen P. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 2005; 37(9): 980–985CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang H, Xie X, Deng M, Chen X, Gan L. Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 2010; 48(6): 407–413CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ohyama T, Groves AK. Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis 2004; 38(4): 195–199CrossRefPubMedGoogle Scholar
  23. 23.
    Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468 (7324): 653–658CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sung JY, Woo CH, Kang YJ, Lee KY, Choi HC. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway. Biochem Biophys Res Commun 2011; 413(1): 143–148CrossRefPubMedGoogle Scholar
  25. 25.
    Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005; 37(10): 1135–1140CrossRefPubMedGoogle Scholar
  26. 26.
    Jones C, Chen P. Primary cilia in planar cell polarity regulation of the inner ear. Curr Top Dev Biol 2008; 85: 197–224CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tilney LG, Tilney MS, De Rosier DJ. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 1992; 8(1): 257–274CrossRefPubMedGoogle Scholar
  28. 28.
    Cui C, Chatterjee B, Francis D, Yu Q, San Agustin JT, Francis R, Tansey T, Henry C, Wang B, Lemley B, Pazour GJ, Lo CW. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011; 4(1): 43–56CrossRefPubMedGoogle Scholar
  29. 29.
    Sipe CW, Lu X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development 2011; 138(16): 3441–3449CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    May-Simera H, Kelley MW. Planar cell polarity in the inner ear. Curr Top Dev Biol 2012; 101: 111–140CrossRefPubMedGoogle Scholar
  31. 31.
    Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 2003; 13(13): 1129–1133CrossRefPubMedGoogle Scholar
  32. 32.
    Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423(6936): 173–177CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147–2156CrossRefPubMedGoogle Scholar
  34. 34.
    Forge A, Souter M, Denman-Johnson K. Structural development of sensory cells in the ear. Semin Cell Dev Biol 1997; 8(3): 225–237CrossRefPubMedGoogle Scholar
  35. 35.
    Rida PC, Chen P. Line up and listen: planar cell polarity regulation in the mammalian inner ear. Semin Cell Dev Biol 2009; 20(8): 978–985CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D. Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 2003; 22(30): 4752–4756CrossRefPubMedGoogle Scholar
  37. 37.
    Lin-Marq N, Borel C, Antonarakis SE. Peutz-Jeghers LKB1 mutants fail to activate GSK-3ß, preventing it from inhibiting Wnt signaling. Mol Genet Genomics 2005; 273(2): 184–196CrossRefPubMedGoogle Scholar
  38. 38.
    Almuedo-Castillo M, Saló E, Adell T. Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci USA 2011; 108(7): 2813–2818CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jenny A, Reynolds-Kenneally J, Das G, Burnett M, Mlodzik M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nat Cell Biol 2005; 7(7): 691–697CrossRefPubMedGoogle Scholar
  40. 40.
    Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998; 12(16): 2610–2622CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD, Luo L. Drosophila Rho-associated kinase (Drok) links Frizzledmediated planar cell polarity signaling to the actin cytoskeleton. Cell 2001; 105(1): 81–91CrossRefPubMedGoogle Scholar
  42. 42.
    Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999; 98(5): 585–595CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuqin Men
    • 1
  • Aizhen Zhang
    • 1
  • Liwen Zhang
    • 2
  • Yecheng Jin
    • 1
  • Zhishuo Wang
    • 1
  • Jing Zhao
    • 1
  • Xiaolin Yu
    • 2
  • Jian Zhang
    • 1
  • Jiangang Gao
    • 1
  1. 1.School of Life Science and Key Laboratory of the Ministry of Education for Experimental TeratologyShandong UniversityJinanChina
  2. 2.Jinan First People’s HospitalJinanChina

Personalised recommendations