Skip to main content
Log in

Genetic evidence in planar cell polarity signaling pathway in human neural tube defects

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Neural tube defects (NTDs) are a group of birth anomalies having a profound physical, emotional, and financial effects on families and communities. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure and has been implicated in the pathogenesis of NTDs in animal models and human cohorts. This review summarizes the cumulative results of recent studies on PCP signaling pathway and human NTDs. These results demonstrate that PCP gene alterations contribute to the etiology of human NTDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol 2009; 85(4): 274–284

    Article  CAS  PubMed  Google Scholar 

  2. De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V. Reduced folate carrier polymorphism (80A→G) and neural tube defects. Eur J Hum Genet 2003; 11(3): 245–252

    Article  PubMed  Google Scholar 

  3. O’Leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM; Members of the Birth Defects Research Group. Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 2006; 87(4): 364–369

    Article  PubMed  Google Scholar 

  4. De Marco P, Merello E, Calevo MG, Mascelli S, Raso A, Cama A, Capra V. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G > A polymorphism for neural tube defect risk. J Hum Genet 2006; 51(2): 98–103

    Article  CAS  PubMed  Google Scholar 

  5. Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet 2007; 71(4): 295–310

    Article  CAS  PubMed  Google Scholar 

  6. van der Linden IJ, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65(2): 204–215

    Article  PubMed  Google Scholar 

  7. Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol 2009; 16(3): 101–110

    Article  PubMed  Google Scholar 

  8. De Marco P, Merello E, Cama A, Kibar Z, Capra V. Human neural tube defects: genetic causes and prevention. Biofactors 2011; 37(4): 261–268

    Article  PubMed  Google Scholar 

  9. Rufener S, Ibrahim M, Parmar HA. Imaging of congenital spine and spinal cord malformations. Neuroimaging Clin N Am 2011; 21(3): 659–676

    Article  PubMed  Google Scholar 

  10. Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009; 29(4): 303–311

    Article  CAS  PubMed  Google Scholar 

  11. Catala M. Genetic control of caudal development. Clin Genet 2002; 61(2): 89–96

    Article  CAS  PubMed  Google Scholar 

  12. Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn 2001; 221(2): 117–145

    Article  CAS  PubMed  Google Scholar 

  13. Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003; 4(10): 784–793

    Article  PubMed  Google Scholar 

  14. Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 1991; 44(2): 225–233

    Article  CAS  PubMed  Google Scholar 

  15. Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong SL, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 1993; 47(5): 723–743

    Article  PubMed  Google Scholar 

  16. Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 2000; 201(6): 455–466

    Article  CAS  Google Scholar 

  17. O’Rahilly R, Müller F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 2002; 65(4): 162–170

    Article  PubMed  Google Scholar 

  18. Rossi A, Cama A, Piatelli G, Ravegnani M, Biancheri R, Tortori-Donati P. Spinal dysraphism: MR imaging rationale. J Neuroradiol 2004; 31(1): 3–24

    Article  CAS  PubMed  Google Scholar 

  19. Vieira AR, Castillo Taucher S. Maternal age and neural tube defects: evidence for a greater effect in spina bifida than in anencephaly. Rev Med Chil 2005; 133(1): 62–70 (in Spanish)

    Article  PubMed  Google Scholar 

  20. Njamnshi AK, Djientcheu VP, Lekoubou A, Guemse M, Obama MT, Mbu R, Takongmo S, Kago I. Neural tube defects are rare among black Americans but not in sub-Saharan black Africans: the case of Yaounde-Cameroon. J Neurol Sci 2008; 270(1–2): 13–17

    Article  CAS  PubMed  Google Scholar 

  21. Grewal J, Carmichael SL, Song J, Shaw GM. Neural tube defects: an analysis of neighbourhood- and individual-level socio-economic characteristics. Paediatr Perinat Epidemiol 2009; 23(2): 116–124

    Article  PubMed Central  PubMed  Google Scholar 

  22. Moretti ME, Bar-Oz B, Fried S, Koren G. Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 2005; 16(2): 216–219

    Article  PubMed  Google Scholar 

  23. Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 2005; 135C(1): 77–87

    Article  PubMed  Google Scholar 

  24. Ray JG, Wyatt PR, Vermeulen MJ, Meier C, Cole DE. Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet Gynecol 2005; 105(2): 261–265

    Article  PubMed  Google Scholar 

  25. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 2007; 357(2): 135–142

    Article  PubMed  Google Scholar 

  26. Cogram P, Hynes A, Dunlevy LPE, Greene NDE, Copp AJ. Specific isoforms of protein kinase C are essential for prevention of folateresistant neural tube defects by inositol. Hum Mol Genet 2004; 13(1): 7–14

    Article  CAS  PubMed  Google Scholar 

  27. Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 2005; 19(9): 1166–1168

    CAS  PubMed  Google Scholar 

  28. Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol 2005; 74(5): 392–398

    Article  CAS  PubMed  Google Scholar 

  29. Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide exposure and neural tube defects in Mexican Americans. Ann Epidemiol 2010; 20(1): 16–22

    Article  PubMed  Google Scholar 

  30. Alwan S, Reefhuis J, Rasmussen SA, Olney RS, Friedman JM; National Birth Defects Prevention Study. Use of selective serotoninreuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med 2007; 356(26): 2684–2692

    Article  CAS  PubMed  Google Scholar 

  31. Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 2010; 88(8): 653–669

    Article  CAS  PubMed  Google Scholar 

  32. Bayly R, Axelrod JD. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 2011; 12(6): 385–391

    Article  CAS  PubMed  Google Scholar 

  33. Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development 2011; 138(10): 1877–1892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21(1): 120–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Henderson DJ, Chaudhry B. Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol 2011; 91(6): 460–467

    Article  CAS  PubMed  Google Scholar 

  36. Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000; 405(6782): 76–81

    Article  CAS  PubMed  Google Scholar 

  37. Wallingford JB, Rowning BA, Vogeli KM, Rothbächer U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000; 405(6782): 81–85

    Article  CAS  PubMed  Google Scholar 

  38. Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001; 28(3): 251–255

    Article  CAS  PubMed  Google Scholar 

  39. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10(22): 2593–2601

    Article  CAS  PubMed  Google Scholar 

  40. Tree DR, Ma D, Axelrod JD. A three-tiered mechanism for regulation of planar cell polarity. Semin Cell Dev Biol 2002; 13(3): 217–224

    Article  CAS  PubMed  Google Scholar 

  41. Axelrod JD. Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 2009; 20(8): 964–971

    Article  CAS  PubMed  Google Scholar 

  42. Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD. Fidelity in planar cell polarity signalling. Nature 2003; 421(6922): 543–547

    Article  CAS  PubMed  Google Scholar 

  43. Zallen JA. Planar polarity and tissue morphogenesis. Cell 2007; 129(6): 1051–1063

    Article  CAS  PubMed  Google Scholar 

  44. Jones C, Chen P. Planar cell polarity signaling in vertebrates. Bioessays 2007; 29(2): 120–132

    Article  CAS  PubMed  Google Scholar 

  45. Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet 2009; 18(R2): R113–R129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lawrence PA, Struhl G, Casal J. Planar cell polarity: one or two pathways? Nat Rev Genet 2007; 8(7): 555–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways? Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays 2011; 33(10): 759–768

    Article  PubMed  Google Scholar 

  48. Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 2008; 133(6): 1093–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Strutt D, Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol 2007; 302(1): 181–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 2004; 131(19): 4651–4664

    Article  CAS  PubMed  Google Scholar 

  51. Amonlirdviman K, Khare NA, Tree DR, Chen WS, Axelrod JD, Tomlin CJ. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 2005; 307(5708): 423–426

    Article  CAS  PubMed  Google Scholar 

  52. Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133(22): 4561–4572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Katoh Y, Katoh M. Comparative genomics on Vangl1 and Vangl2 genes. Int J Oncol 2005; 26(5): 1435–1440

    CAS  PubMed  Google Scholar 

  54. Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 2007; 356(14): 1432–1437

    Article  CAS  PubMed  Google Scholar 

  55. Kibar Z, Bosoi CM, Kooistra M, Salem S, Finnell RH, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Novel mutations in VANGL1 in neural tube defects. Hum Mutat 2009; 30(7): E706–E715

    Article  PubMed Central  PubMed  Google Scholar 

  56. Reynolds A, McDearmid JR, Lachance S, De Marco P, Merello E, Capra V, Gros P, Drapeau P, Kibar Z. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev 2010; 127(7–8): 385–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects. Mol Syndromol 2012; 3(2): 76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 2010; 362(23): 2232–2235

    Article  CAS  PubMed  Google Scholar 

  59. Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 2011; 80(1): 76–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Schulte G, Bryja V. The Frizzled family of unconventional Gprotein-coupled receptors. Trends Pharmacol Sci 2007; 28(10): 518–525

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147–2156

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 2006; 26(2): 355–364

    Article  CAS  PubMed  Google Scholar 

  63. Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137(21): 3707–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sala CF, Formenti E, Terstappen GC, Caricasole A. Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochem Biophys Res Commun 2000; 273(1): 27–34

    Article  CAS  PubMed  Google Scholar 

  65. Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun 1998; 243(2): 622–627

    Article  CAS  PubMed  Google Scholar 

  66. De Marco P, Merello E, Rossi A, Piatelli G, Cama A, Kibar Z, Capra V. FZD6 is a novel gene for human neural tube defects. Hum Mutat 2012; 33(2): 384–390

    Article  PubMed  Google Scholar 

  67. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8(1): 11–20

    Article  CAS  PubMed  Google Scholar 

  68. Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 2012; 33(2): 440–447

    Article  CAS  PubMed  Google Scholar 

  69. Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol 2012; 94(3): 176–181

    Article  CAS  PubMed  Google Scholar 

  70. Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002; 419(6908): 726–729

    Article  CAS  PubMed  Google Scholar 

  71. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003; 12(5): 1251–1260

    Article  CAS  PubMed  Google Scholar 

  72. Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol 2000; 7(12): 1178–1184

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133(9): 1767–1778

    Article  CAS  PubMed  Google Scholar 

  74. Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 2008; 4(11): e1000259

    Article  PubMed Central  PubMed  Google Scholar 

  75. De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci 2013; 49(3): 582–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003; 130(17): 4037–4046

    Article  CAS  PubMed  Google Scholar 

  77. Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13(8): 674–679

    Article  CAS  PubMed  Google Scholar 

  78. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 2003; 13(8): 680–685

    Article  CAS  PubMed  Google Scholar 

  79. Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, Finnell RH. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A 2010; 152A(2): 299–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, Fox MH, Gurnett C, Montine T, Bird T, Shaffer LG, Rosenfeld JA, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto RP, Scott MP, Antic D, Reed J, Boland R, Ehaideb SN, El-Shanti H, Mahajan VB, Ferguson PJ, Axelrod JD, Lehesjoki AE, Fritzsch B, Slusarski DC, Wemmie J, Ueno N, Bassuk AG. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 2011; 88(2): 138–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, Drapeau P, Bassuk AG, Kibar Z. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 2011; 32(12): 1371–1375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009; 11(10): 1225–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn 2009; 238(12): 3035–3042

    Article  CAS  PubMed  Google Scholar 

  84. Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 2011; 20(22): 4324–4333

    Article  CAS  PubMed  Google Scholar 

  85. Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 2003; 12(2): 87–98

    Article  CAS  PubMed  Google Scholar 

  86. Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. Dapper, a Dishevelledassociated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2002; 2(4): 449–461

    Article  CAS  PubMed  Google Scholar 

  87. Suriben R, Kivimäe S, Fisher DA, Moon RT, Cheyette BN. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41(9): 977–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem 2010; 285(14): 11023–11030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Yang X, Cheyette BN. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem 2013; 288(28): 20111–20120

    Article  CAS  PubMed  Google Scholar 

  90. Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, Cai CQ, Li H, Chen Y, Zhang T, Wu BL, Jin L, Chen YG, Wang HY. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat 2012; 33(10): 1450–1455

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouyan Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Shi, O. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects. Front. Med. 8, 68–78 (2014). https://doi.org/10.1007/s11684-014-0308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-014-0308-4

Keywords

Navigation