Skip to main content
Log in

Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) development is characterized by the presence of epigenetic alterations, including promoter DNA hypermethylation and post-translational modifications of histone, which profoundly affect expression of a wide repertoire of genes critical for cancer development. Emerging data suggest that deregulation of polycomb group (PcG) proteins, which are key chromatin modifiers repressing gene transcription during developmental stage, plays a causative role in oncogenesis. PcG proteins assemble into polycomb repressive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2) to impose the histone H3 lysine 27 trimethylation (H3K27me3) modification for repression. In this review, we will first recapitulate the mechanisms of two key epigenetic pathways: DNA methylation and histone modifications. Specifically, we will focus our discussion on the molecular roles of PcG proteins. Next, we will highlight recent findings on PcG proteins, their clinicopathological implication and their downstream molecular consequence in hepatocarcinogenesis. Last but not least, we will consider the therapeutic potential of targeting enhancer of zeste homolog 2 (EZH2) as a possible treatment for HCC. Improving our understanding on the roles of PcG proteins in hepatocarcinogenesis can benefit the development of epigenetic-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90

    Article  PubMed  Google Scholar 

  2. Ferlay Ja. GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC CancerBase. 2008; Available from: http://globocan.iarc.fr/(Accessed on October 1, 2012)

    Google Scholar 

  3. Tang ZY. Hepatocellular carcinoma-cause, treatment and metastasis. World J Gastroenterol 2001;7(4):445–454

    PubMed  CAS  Google Scholar 

  4. Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128(4):683–692

    Article  PubMed  CAS  Google Scholar 

  5. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21(2):163–167

    Article  PubMed  CAS  Google Scholar 

  6. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975;14(1):9–25

    Article  PubMed  CAS  Google Scholar 

  7. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975;187(4173):226–232

    Article  PubMed  CAS  Google Scholar 

  8. Kondoh N, Wakatsuki T, Hada A, Shuda M, Tanaka K, Arai M, Yamamoto M. Genetic and epigenetic events in human hepatocarcinogenesis. Int J Oncol 2001;18(6):1271–1278

    PubMed  CAS  Google Scholar 

  9. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3(6):415–428

    PubMed  CAS  Google Scholar 

  10. Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol 1999;9(5):329–337

    Article  PubMed  CAS  Google Scholar 

  11. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19(2):187–191

    Article  PubMed  CAS  Google Scholar 

  12. Wong CM, Ng YL, Lee JM, Wong CC, Cheung OF, Chan CY, Tung EK, Ching YP, Ng IO. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology 2007;45(5):1129–1138

    Article  PubMed  CAS  Google Scholar 

  13. Tung EK, Wong CM, Yau TO, Lee JM, Ching YP, Ng IO. HAI-2 is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for anti-invasive functions. Int J Cancer 2009;124(8):1811–1819

    Article  PubMed  CAS  Google Scholar 

  14. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983;11(19):6883–6894

    Article  PubMed  CAS  Google Scholar 

  15. Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 2009;19(6):959–966

    Article  PubMed  CAS  Google Scholar 

  16. Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 2010;101(1):36–45

    Article  PubMed  CAS  Google Scholar 

  17. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002;21(35):5400–5413

    Article  PubMed  CAS  Google Scholar 

  18. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 2001;33(3):561–568

    Article  PubMed  CAS  Google Scholar 

  19. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98(3):285–294

    Article  PubMed  CAS  Google Scholar 

  20. Böhm L, Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep 1984;4(5):365–386

    Article  PubMed  Google Scholar 

  21. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403(6765):41–45

    Article  PubMed  CAS  Google Scholar 

  22. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293(5532):1074–1080

    Article  PubMed  CAS  Google Scholar 

  23. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978;276(5688):565–570

    Article  PubMed  CAS  Google Scholar 

  24. Levine SS, King IF, Kingston RE. Division of labor in polycomb group repression. Trends Biochem Sci 2004;29(9):478–485

    Article  PubMed  CAS  Google Scholar 

  25. Otte AP, Kwaks TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 2003;13(5):448–454

    Article  PubMed  CAS  Google Scholar 

  26. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002;298(5595):1039–1043

    Article  PubMed  CAS  Google Scholar 

  27. Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 2009;138(5):885–897

    Article  PubMed  CAS  Google Scholar 

  28. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003;300(5616):131–135

    Article  PubMed  CAS  Google Scholar 

  29. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008;32(2):232–246

    Article  PubMed  CAS  Google Scholar 

  30. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007;129(7):1311–1323

    Article  PubMed  CAS  Google Scholar 

  31. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006;125(2):301–313

    Article  PubMed  CAS  Google Scholar 

  32. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genomewide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006;20(9):1123–1136

    Article  PubMed  CAS  Google Scholar 

  33. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006;441(7091):349–353

    Article  PubMed  CAS  Google Scholar 

  34. Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009;36(1):61–74

    Article  PubMed  CAS  Google Scholar 

  35. Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 2005 24;15(10): 942–947

    Article  PubMed  CAS  Google Scholar 

  36. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004;23(20):4061–4071

    Article  PubMed  CAS  Google Scholar 

  37. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EEDEZH2 complex. Mol Cell 2004;15(1):57–67

    Article  PubMed  CAS  Google Scholar 

  38. Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, Chen YC, Wu QL, Liu YH, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut 2011;60(7):967–976

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, Ohta T, Nakanuma Y. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008;88(8):873–882

    Article  PubMed  CAS  Google Scholar 

  40. Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, Wakiyama S, Fujita H, Shirouzu K, Mori M. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005;92(9):1754–1758

    Article  PubMed  CAS  Google Scholar 

  41. Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, Wong CM. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 2012;56(2):622–631

    Article  PubMed  CAS  Google Scholar 

  42. Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, Lin MC, Guan XY, Kung HF, Zeng YX, Xie D. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011;17(1–2):12–20

    PubMed  CAS  Google Scholar 

  43. Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets 2008;9(11):1013–1024

    Article  PubMed  CAS  Google Scholar 

  44. Cheng AS, Lau SS, Chen Y, Kondo Y, Li MS, Feng H, Ching AK, Cheung KF, Wong HK, Tong JH, Jin H, Choy KW, Yu J, To KF, Wong N, Huang TH, Sung JJ. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res 2011;71(11):4028–4039

    Article  PubMed  CAS  Google Scholar 

  45. Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008;12(6A):2189–2204

    Article  PubMed  CAS  Google Scholar 

  46. Ji J, Wang XW. New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biol Ther 2009;8(18):1686–1693

    PubMed  Google Scholar 

  47. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12(2):99–110

    Article  PubMed  CAS  Google Scholar 

  48. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 2012;61(2):278–289

    Article  PubMed  CAS  Google Scholar 

  49. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008;322(5908):1695–1699

    Article  PubMed  CAS  Google Scholar 

  50. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, Möller P, Stilgenbauer S, Pollack JR, Wirth T. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008;112(10):4202–4212

    Article  PubMed  CAS  Google Scholar 

  51. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z, Yu J, Maher CA, Varambally S, Chinnaiyan AM. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011;20(2):187–199

    Article  PubMed  CAS  Google Scholar 

  52. Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 2006;16(7):890–900

    Article  PubMed  CAS  Google Scholar 

  53. Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003;2(1):113–121

    PubMed  CAS  Google Scholar 

  54. Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X proteinmediated hepatocyte transformation and in HBV replication. Hepatology 2011;53(4):1137–1147

    Article  PubMed  CAS  Google Scholar 

  55. Studach LL, Menne S, Cairo S, Buendia MA, Hullinger RL, Lefrançois L, Merle P, Andrisani OM. A subset of Suz12/PRC2 target genes is activated during HBV replication and liver carcinogenesis associated with hepatitis B virus X protein. Hepatology 2012;56(4):1240–1251

    Article  PubMed  CAS  Google Scholar 

  56. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012;45(3):344–356

    Article  PubMed  CAS  Google Scholar 

  57. Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA, Di Croce L. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 2012;10(1):47–62

    Article  PubMed  CAS  Google Scholar 

  58. van der Lugt NM, Alkema M, Berns A, Deschamps J. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech Dev 1996;58(1–2):153–164

    Article  PubMed  Google Scholar 

  59. Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M, Koseki H. A role for mel-18, a polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development 1996;122(5):1513–1522

    PubMed  CAS  Google Scholar 

  60. Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M. Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci 2010;101(3):666–672

    Article  PubMed  CAS  Google Scholar 

  61. Wang H, Pan K, Zhang HK, Weng DS, Zhou J, Li JJ, Huang W, Song HF, Chen MS, Xia JC. Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 2008;134(5):535–541

    Article  PubMed  CAS  Google Scholar 

  62. Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 2010;17(4):294–299

    Article  PubMed  CAS  Google Scholar 

  63. Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, Dimri GP, Chen X. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res 2009;7(12):1937–1945

    Article  PubMed  CAS  Google Scholar 

  64. Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, Miyoshi H, Nakano M, Zen Y, Nakanuma Y, Nakauchi H, Iwama A, Taniguchi H. Enhanced self-renewal capability in hepatic stem/ progenitor cells drives cancer initiation. Gastroenterology 2007;133(3):937–950

    Article  PubMed  CAS  Google Scholar 

  65. Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, Yonemitsu Y, Yokosuka O, Taniguchi H, Nakauchi H, Iwama A. The polycomb gene product BMI1 contributes to the maintenance of tumorinitiating side population cells in hepatocellular carcinoma. Cancer Res 2008;68(19):7742–7749

    Article  PubMed  CAS  Google Scholar 

  66. O’Loghlen A, Muñoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F, Masui O, Vermeulen M, Carroll T, Graumann J, Heard E, Dillon N, Azuara V, Snijders AP, Peters G, Bernstein E, Gil J. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 2012;10(1):33–46

    Article  PubMed  Google Scholar 

  67. Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T, Borner M, Diamantis I, Esposito F, Brunner T, Zimmermann A, Federico A, Terracciano L, Fusco A. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer 2010;46(8):1438–1444

    Article  PubMed  CAS  Google Scholar 

  68. Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, Bianco M, Ferraro A, Sacchetti S, Troncone G, Fusco A, Tornillo L. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer 2010;46(12):2304–2313

    Article  PubMed  CAS  Google Scholar 

  69. Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U, Sepe R, Palma G, Troncone G, Scarfò M, Arra C, Fedele M, Fusco A. CBX7 is a tumor suppressor in mice and humans. J Clin Invest 2012;122(2):612–623

    Article  PubMed  CAS  Google Scholar 

  70. Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998;1(7):1057–1064

    Article  PubMed  CAS  Google Scholar 

  71. Wilkinson FH, Park K, Atchison ML. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci USA 2006;103(51):19296–19301

    Article  PubMed  CAS  Google Scholar 

  72. Notarbartolo M, Giannitrapani L, Vivona N, Poma P, Labbozzetta M, Florena A M, Porcasi R, Rosario Muggeo V M, Sandonato L, Cervello M, Montalto G, D’Alessandro N. Frequent alteration of the Yin Yang 1/Raf-1 kinase inhibitory protein ratio in hepatocellular carcinoma. OMICS: A Journal of Integrative Biology 2011;15(5):267–272

    Article  CAS  Google Scholar 

  73. Zhang S, Jiang T, Feng L, Sun J, Lu H, Wang Q, Pan M, Huang D, Wang X, Wang L, Jin H. Yin Yang-1 suppresses differentiation of hepatocellular carcinoma cells through the downregulation of CCAAT/enhancer-binding protein alpha. J Mol Med (Berl) 2012;90(9):1069–1077

    Article  CAS  Google Scholar 

  74. Zhang L, Cai X, Chen K, Wang Z, Wang L, Ren M, Huang A, Tang H. Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus Res 2011;157(1):76–81

    Article  PubMed  CAS  Google Scholar 

  75. García E, Marcos-Gutiérrez C, del Mar Lorente M, Moreno JC, Vidal M. RYBP, a new repressor protein that interacts with components of the mammalian polycomb complex, and with the transcription factor YY1. EMBO J 1999;18(12):3404–3418

    Article  PubMed  Google Scholar 

  76. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 2012;148(4):664–678

    Article  PubMed  CAS  Google Scholar 

  77. Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep 2009;10(2):166–172

    Article  PubMed  CAS  Google Scholar 

  78. Baylin SB, Jones PA. A decade of exploring the cancer epigenomebiological and translational implications. Nat Rev Cancer 2011;11(10):726–734

    Article  PubMed  CAS  Google Scholar 

  79. Chiang PK, Cantoni GL. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem Pharmacol 1979;28(12):1897–1902

    Article  PubMed  CAS  Google Scholar 

  80. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q. Pharmacologic disruption of Polycombrepressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007;21(9):1050–1063

    Article  PubMed  CAS  Google Scholar 

  81. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009;8(6):1579–1588

    Article  PubMed  CAS  Google Scholar 

  82. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, Balusu R, Koul S, Atadja P, Marquez VE, Bhalla KN. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009;114(13):2733–2743

    Article  PubMed  CAS  Google Scholar 

  83. Cheng LL, Itahana Y, Lei ZD, Chia NY, Wu Y, Yu Y, Zhang SL, Thike AA, Pandey A, Rozen S, Voorhoeve PM, Yu Q, Tan PH, Bay BH, Itahana K, Tan P. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep). Clin Cancer Res 2012 1;18(15):4201–4212

    Article  PubMed  CAS  Google Scholar 

  84. Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, Iwama A, Yokosuka O. 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer 2012;130(11):2557–2567

    Article  PubMed  CAS  Google Scholar 

  85. Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, Hui CK, Lau GK, He ML, Sung J, Kung HF. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology 2007;46(1):200–208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Oi-Lin Ng or Chun-Ming Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au, S.LK., Ng, I.OL. & Wong, CM. Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins. Front. Med. 7, 231–241 (2013). https://doi.org/10.1007/s11684-013-0253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0253-7

Keywords

Navigation