Frontiers of Medicine

, Volume 6, Issue 1, pp 8–21 | Cite as

Medical applications of phytoestrogens from the Thai herb Pueraria mirifica

  • Suchinda MalaivijitnondEmail author


Pueraria mirifica Airy Shaw et Suvatabandhu is a medicinal plant endemic to Thailand. It has been used in Thai folklore medicine for its rejuvenating qualities in aged women and men for nearly one hundred years. Indeed, it has been claimed that P. mirifica contains active phytoestrogens (plant substances with estrogen-like activity). Using high performance liquid chromatography, at least 17 phytoestrogens, mainly isoflavones, have been isolated. Thus, fairly considerable scientific researches, both in vitro in cell lines and in vivo in various species of animals including humans, have been conducted to date to address its estrogenic activity on the reproductive organs, bones, cardiovascular diseases and other climacteric related symptoms. The antioxidative capacity and antiproliferative effect on tumor cell lines have also been assessed. In general, P. mirifica could be applicable for preventing, or as a therapeutic for, the symptoms related to estrogen deficiency in menopausal women as well as in andropausal men. However, the optimal doses for each desirable effect and the balance to avoid undesired side effects need to be calculated before use.


white Kwao Krua miroestrol estrogenic activity reproduction osteoporosis breast cancer Alzheimer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ingham JL, Tahara S, Pope GS. Chemical components and pharmacology of the rejuvenating plant Pueraria mirifica. In: Keung WM, ed. Pueraria: The genus Pueraria. London: Taylor & Francis, 2002: 97–118Google Scholar
  2. 2.
    Bodner CC, Hymowitz T. Ethnobotany of Pueraria species. In: Keung WM, ed. Pueraria: The genus Pueraria. London: Taylor & Francis, 2002: 29–58Google Scholar
  3. 3.
    Cherdshewasart W, Kitsamai Y, Malaivijitnond S. Evaluation of the estrogenic activity of the wild Pueraria mirifica by vaginal cornification assay. J Reprod Dev 2007; 53(2): 385–393PubMedCrossRefGoogle Scholar
  4. 4.
    Van der Maesen LJG. Pueraria: botanical characteristics. In: Keung WM, ed. Pueraria: The genus Pueraria. London: Taylor &Francis, 2002: 1–28Google Scholar
  5. 5.
    Malaivijitnond S, Chansri K, Kijkuokul P, Urasopon N, Cherdshewasart W. Using vaginal cytology to assess the estrogenic activity of phytoestrogen-rich herb. J Ethnopharmacol 2006; 107(3): 354–360PubMedCrossRefGoogle Scholar
  6. 6.
    Trisomboon H, Malaivijitnond S, Watanabe G, Taya K. Ovulation block by Pueraria mirifica: a study of its endocrinological effect in female monkeys. Endocrine 2005; 26(1): 33–39PubMedCrossRefGoogle Scholar
  7. 7.
    Trisomboon H, Malaivijitnond S, Watanabe G, Cherdshewasart W, Taya K. The estrogenic effect of Pueraria mirifica on gonadotrophin levels in aged monkeys. Endocrine 2006; 29(1): 129–134PubMedCrossRefGoogle Scholar
  8. 8.
    Lonuchit T, Malaivijitnond S. The determination of Pueraria mirifica samples in the laboratory. Thai Science Journal 2011; 65(6): 76–81Google Scholar
  9. 9.
    Cherdshewasart W, Sriwatcharakul S. Major isoflavonoid contents of the 1-year-cultivated phytoestrogen-rich herb, Pueraria mirifica. Biosci Biotechnol Biochem 2007; 71(10): 2527–2533PubMedCrossRefGoogle Scholar
  10. 10.
    Suwanvijitr T, Kaewmuangmoon J, Cherdshewasart W, Chanchao C. Morphometric and genetic variation in Pueraria mirifica cultivars across Thailand. Pak J Bot 2010; 42(1): 97–109Google Scholar
  11. 11.
    Suntara A. The Remedy pamphlet of Kwao Krua tuber of Luang Anusarnsuntarakromkarnphiset. Chiang Mai, Thailand: Chiang Mai Upatipongsa Press, 1931Google Scholar
  12. 12.
    Kerr A. A reputed rejuvenator. J Siam Soc (Natural History Suppl) 1932; 8: 336–338Google Scholar
  13. 13.
    Sukhavachana D. Ostrogenic principle of Butea superb. J Med Assoc Thai 1941; 24: 83–94Google Scholar
  14. 14.
    Bounds DG, Pope GS. Light-absorption and chemical properties of miroestrol, the oestrogenic substance of Pueraria mirifica. J Chem Soc 1960; 3696–3704Google Scholar
  15. 15.
    Kashemsanta L, Suvatabandhu K, Airy Shaw HK. A new species of Pueraria (Leguminosae) from Thailand, yielding an oestrogenic principle. Kew Bull 1952; 7(4): 549–552CrossRefGoogle Scholar
  16. 16.
    Yusakul G, Putalun W, Udomsin O, Juengwatanatrakul T, Chaichantipyuth C. Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia 2011; 82(2): 203–207PubMedCrossRefGoogle Scholar
  17. 17.
    Pope GS, Grundy HM, Jones HEH, Tait SAS. The estrogenic substance (miroestrol) from the tuberous roots of Pueraria mirifica. J Endocrinol 1958; 17(1): 15–16Google Scholar
  18. 18.
    Wanadorn W. A reputed rejuvenator. J Siam Soc Nat His 1933; Suppl9: 145–147 (in Thai)Google Scholar
  19. 19.
    Cain JC. Miroestrol: an oestrogen from the plant Pueraria mirifica. Nature 1960; 188(4753): 774–777PubMedCrossRefGoogle Scholar
  20. 20.
    Jones HEH, Pope GS. A study of the action of miroestrol and other oestrogens on the reproductive tract of the immature female mouse. J Endocrinol 1960; 20(3): 229–235PubMedCrossRefGoogle Scholar
  21. 21.
    Jones HEH, Pope GS. A method for the isolation of miroestrol from Pueraria mirifica. J Endocrinol 1961; 22(3): 303–312PubMedCrossRefGoogle Scholar
  22. 22.
    Chansakaow S, Ishikawa T, Seki H, Sekine K, Okada M, Chaichantipyuth C. Identification of deoxymiroestrol as the actual rejuvenating principle of “Kwao Keur,” Pueraria mirifica. The known miroestrol may be an artifact. J Nat Prod 2000; 63(2): 173–175PubMedCrossRefGoogle Scholar
  23. 23.
    Okamura S, Sawada Y, Satoh T, Sakamoto H, Saito Y, Sumino H, Takizawa T, Kogure T, Chaichantipyuth C, Higuchi Y, Ishikawa T, Sakamaki T. Pueraria mirifica phytoestrogens improve dyslipidemia in postmenopausal women probably by activating estrogen receptor subtypes. Tohoku J Exp Med 2008; 216(4): 341–351PubMedCrossRefGoogle Scholar
  24. 24.
    Jones HEH, Waynforth HB, Pope GS. The effect of miroestrol on vaginal cornification, pituitary function and pregnancy in the rat. J Endocrinol 1961; 22(3): 293–302PubMedCrossRefGoogle Scholar
  25. 25.
    Ingham JL, Tahara S, Dziedzic SZ. A chemical investigation of Pueraria mirifica roots. Z Naturforsch Ser C 1986; 41: 403–408Google Scholar
  26. 26.
    Ingham JL, Tahara S, Dziedzic SZ. Coumestans from the roots of Pueraria mirifica. Z Naturforsch. Ser C 1988; 43: 5–10Google Scholar
  27. 27.
    Ingham JL, Tahara S, Dziedzic SZ. Minor isoflavones from the roots of Pueraria mirifica. Z Naturforsch Ser C 1989; 44: 724–726Google Scholar
  28. 28.
    Chansakaow S, Ishikawa T, Sekine K, Okada M, Higuchi Y, Kudo M, Chaichantipyuth C. Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med 2000; 66(6): 572–575PubMedCrossRefGoogle Scholar
  29. 29.
    Cherdshewasart W, Subtang S, Dahlan W. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J Pharm Biomed Anal 2007; 43(2): 428–434PubMedCrossRefGoogle Scholar
  30. 30.
    Urasopon N, Hamada Y, Asaoka K, Poungmali U, Malaivijitnond S. Isoflavone content of rodent diets and its estrogenic effect on vaginal cornification in Pueraria mirifica-treated rats. Sci Asia 2008; 34(4): 371–376CrossRefGoogle Scholar
  31. 31.
    Barnes S, Coward L, Kirk M, Sfakianos J. HPLC-mass spectrometry analysis of isoflavones. Proc Soc Exp Biol Med 1998; 217(3): 254–262PubMedGoogle Scholar
  32. 32.
    Murkies AL, Wilcox G, Davis SR. Clinical review 92: Phytoestrogens. J Clin Endocrinol Metab 1998; 83(2): 297–303PubMedCrossRefGoogle Scholar
  33. 33.
    Ito F, Iwasaki M, Watanabe T, Ishikawa T, Higuchi Y. The first total synthesis of kwakhurin, a characteristic component of a rejuvenating plant, “kwao keur”: toward an efficient synthetic route to phytoestrogenic isoflavones. Org Biomol Chem 2005; 3(4): 674–681PubMedCrossRefGoogle Scholar
  34. 34.
    Malaivijitnond S, Kiatthaipipat P, Cherdshewasart W, Watanabe G, Taya K. Different effects of Pueraria mirifica, a herb containing phytoestrogens, on LH and FSH secretion in gonadectomized female and male rats. J Pharmacol Sci 2004; 96(4): 428–435PubMedCrossRefGoogle Scholar
  35. 35.
    Yasuda T, Kano Y, Saito K, Ohsawa K. Urinary and biliary metabolites of puerarin in rats. Biol Pharm Bull 1995; 18(2): 300–303PubMedCrossRefGoogle Scholar
  36. 36.
    Park EK, Shin J, Bae EA, Lee YC, Kim DH. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol Pharm Bull 2006; 29(12): 2432–2435PubMedCrossRefGoogle Scholar
  37. 37.
    Jin JS, Nishihata T, Kakiuchi N, Hattori M. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in coculture of two human intestinal bacteria. Biol Pharm Bull 2008; 31(8): 1621–1625PubMedCrossRefGoogle Scholar
  38. 38.
    Cherdshewasart W, Traisup V, Picha P. Determination of the estrogenic activity of wild phytoestrogen-rich Pueraria mirifica by MCF-7 proliferation assay. J Reprod Dev 2008; 54(1): 63–67PubMedCrossRefGoogle Scholar
  39. 39.
    Chivapat S, Chavalittumrong P, Rattanajarasroj S, Chuthaputti A, Panyamang S. Toxicity study of Pueraria mirifica Airy Shaw et Suvatabandhu. Bull Med Sci 2000; 42(3): 202–223Google Scholar
  40. 40.
    Cherdshewasart W. Toxicity tests of a phytoestrogen-rich herb; Pueraria mirifica. J Sci Res Chula Univ 2003; 28(1): 1–12Google Scholar
  41. 41.
    Manosroi A, Saowakhon S, Manosroi J. Preliminary chronic toxicity study of herbal formulations containing red Kwao Krua (Butea superba Roxb.) or white Kwao Krua (Pueraria mirifica Airy Shaw and Suvatabandhu) in wistar rats. SWU J Pharm Sci 2004; 9(1): 1–12Google Scholar
  42. 42.
    Chivapat S, Chavalittumrong P, Rattanajarasroj S, Panyamang S. Chronic toxicity of Pueraria mirifica in rats. Thai J Pharm 2005; 27(2–3): 76–90Google Scholar
  43. 43.
    Saenphet K, Kantaoop P, Saenphet S, Aritajat S. Mutagenicity of Pueraria mirifica Airy Shaw & Suvatabandhu and antimutagenicity of Thunbergia laurifolia Linn. Southeast Asian J Trop Med Public Health 2005; 36(Suppl 4): 238–241PubMedGoogle Scholar
  44. 44.
    Cherdshewasart W, Sutjit W, Pulcharoen K, Chulasiri M. The mutagenic and antimutagenic effects of the traditional phytoestrogen-rich herbs, Pueraria mirifica and Pueraria lobata. Braz J Med Biol Res 2009; 42(9): 816–823PubMedGoogle Scholar
  45. 45.
    Muangman V, Cherdshewasart W. Clinical trial of the phytoestrogen-rich herb, Pueraria mirifica as a crude drug in the treatment of symptoms in menopausal women. Siriraj Hosp Gaz 2001; 53(5): 300–310Google Scholar
  46. 46.
    Chandeying V, Lamlertkittikul S. Challenges in the conduct of Thai herbal scientific study: efficacy and safety of phytoestrogen, Pueraria mirifica (Kwao Keur Kao), phase I, in the alleviation of climacteric symptoms in perimenopausal women. J Med Assoc Thai 2007; 90(7): 1274–1280PubMedGoogle Scholar
  47. 47.
    Manonai J, Chittacharoen A, Udomsubpayakul U, Theppisai H, Theppisai U. Effects and safety of Pueraria mirifica on lipid profiles and biochemical markers of bone turnover rates in healthy postmenopausal women. Menopause 2008; 15(3): 530–535PubMedCrossRefGoogle Scholar
  48. 48.
    Cherdshewasart W, Cheewasopit W, Picha P. The differential antiproliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells. J Ethnopharmacol 2004; 93(2–3): 255–260PubMedCrossRefGoogle Scholar
  49. 49.
    Sookvanichsilp N, Soonthornchareonnon N, Boonleang C. Estrogenic activity of the dichloromethane extract from Pueraria mirifica. Fitoterapia 2008; 79(7–8): 509–514PubMedCrossRefGoogle Scholar
  50. 50.
    Furuya Y, Kohno N, Fujiwara Y, Saitoh Y. Mechanisms of estrogen action on the proliferation of MCF-7 human breast cancer cells in an improved culture medium. Cancer Res 1989; 49(23): 6670–6674PubMedGoogle Scholar
  51. 51.
    Cherdshewasart W, Cheewasopit W, Picha P. Anti-proliferative effects of the white (Pueraria mirifica), red (Butea superba) and black (Mucuna collettii) Kwao Krua plants on the growth of Hela cells. J Sci Res Chula Univ 2004; 29(1): 27–32Google Scholar
  52. 52.
    Boonchird C, Mahapanichkul T, Cherdshewasart W. Differential binding with ERalpha and ERbeta of the phytoestrogen-rich plant Pueraria mirifica. Braz J Med Biol Res 2010; 43(2): 195–200PubMedCrossRefGoogle Scholar
  53. 53.
    Lee YS, Park JS, Cho SD, Son JK, Cherdshewasart W, Kang KS. Requirement of metabolic activation for estrogenic activity of Pueraria mirifica. J Vet Sci 2002; 3(4): 273–277PubMedGoogle Scholar
  54. 54.
    Cherdshewasart W, Sriwatcharakul S, Malaivijitnond S. Variance of estrogenic activity of the phytoestrogen-rich plant. Maturitas 2008; 61(4): 350–357PubMedCrossRefGoogle Scholar
  55. 55.
    Udomsuk L, Jarukamjorn K, Putalun W, Sakuma T, Kawasaki Y, Nemoto N. Modified expression of aryl hydrocarbon receptorrelated genes by deoxymiroestrol, a phytoestrogen, in mouse hepatocytes in primary culture. J Ethnopharmacol 2011; 137(1): 902–908PubMedCrossRefGoogle Scholar
  56. 56.
    Udomsuk L, Juengwatanatrakul T, Putalun W, Jarukamjorn K. Down regulation of gene related sex hormone synthesis pathway in mouse testes by miroestrol and deoxymiroestrol. Fitoterapia 2011; 82(8): 1185–1189PubMedCrossRefGoogle Scholar
  57. 57.
    Siangcham T, Saenphet S, Saenphet K. Estrogen bioassay of Pueraria mirifica Airy Shaw & Suvatabandhu. J Med Plant Res 2010; 4(9): 741–744Google Scholar
  58. 58.
    Urasopon N, Hamada Y, Cherdshewasart W, Malaivijitnond S. Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats. Maturitas 2008; 59(2): 137–148PubMedCrossRefGoogle Scholar
  59. 59.
    Malaivijitnond S, Tungmunnithum D, Gittarasanee S, Kawin K, Limjunyawong N. Puerarin exhibits weak estrogenic activity in female rats. Fitoterapia 2010; 81(6): 569–576PubMedCrossRefGoogle Scholar
  60. 60.
    Kuiper GGJM, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 1997; 138(3): 863–870PubMedCrossRefGoogle Scholar
  61. 61.
    Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998; 139(10): 4252–4263PubMedCrossRefGoogle Scholar
  62. 62.
    Jaroenporn S, Malaivijitnond S, Wattanasirmkit K, Trisomboon H, Watanabe G, Taya K, Cherdshewasart W. Effects of Pueraria mirifica, an herb containing phytoestrogens, on reproductive organs and fertility of adult male mice. Endocrine 2006; 30(1): 93–101PubMedCrossRefGoogle Scholar
  63. 63.
    Jaroenporn S, Malaivijitnond S, Wattanasirmkit K, Watanabe G, Taya K, Cherdshewasart W. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica herb. J Reprod Dev 2007; 53(5): 995–1005PubMedCrossRefGoogle Scholar
  64. 64.
    Trisomboon H, Malaivijitnond S, Watanabe G, Taya K. Estrogenic effect of Pueraria mirifica on the menstrual cycle and hormones related ovarian function in cyclic female cynomolgus monkeys. J Pharmacol Sci 2004; 94(1): 51–59PubMedCrossRefGoogle Scholar
  65. 65.
    Trisomboon H, Malaivijitnond S, Cherdshewasart W, Watanabe G, Taya K. The influence of Pueraria mirifica herb containing phytoestrogens on the urinary gonadotropin and estradiol levels in aged menopausal monkeys. Anim Sci J 2007; 78(4): 378–386CrossRefGoogle Scholar
  66. 66.
    Trisomboon H, Malaivijitnond S, Cherdshewasart W, Watanabe G, Taya K. Assessment of urinary gonadotropin and steroid hormone profiles of female cynomolgus monkeys after treatment with Pueraria mirifica. J Reprod Dev 2007; 53(2): 395–403PubMedCrossRefGoogle Scholar
  67. 67.
    Urasopon N, Hamada Y, Asaoka K, Cherdshewasart W, Malaivijitnond S. Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. Maturitas 2007; 56(3): 322–331PubMedCrossRefGoogle Scholar
  68. 68.
    Trisomboon H, Malaivijitnond S, CherdshewasartW,Watanabe G, Taya K. Effect of Pueraria mirifica on the sexual skin coloration of aged menopausal cynomolgus monkeys. J Reprod Dev 2006; 52(4): 537–542PubMedCrossRefGoogle Scholar
  69. 69.
    Malaivijitnond S, Hamada Y, Suryobroto B, Takenaka O. Female long-tailed macaques with scrotum-like structure. Am J Primatol 2007; 69(7): 721–735PubMedCrossRefGoogle Scholar
  70. 70.
    Onouchi T, Kato J. Estrogen receptors and estrogen-inducible progestin receptors in the sexual skin of the monkey. J Steroid Biochem 1983; 18(2): 145–151PubMedCrossRefGoogle Scholar
  71. 71.
    Langkalichan Y, Smitasiri Y. Effect of White Cwow (Pueraria mirifica) on reproduction in male Albino rat. Master’s Thesis, Chiang Mai University, Thailand, 1984Google Scholar
  72. 72.
    Muangdet N, Anuntalabhochai S. Effects of low doses of white gwow (Pueraria mirifica) on female Japanese quails. J Sci Fac CMU 1986; 12(1): 28–40Google Scholar
  73. 73.
    Smitasiri Y, Junyatum U, Songjitsawad A, Sripromma P, Trisrilp S, Snuntalabhochai S. Post-coital antifertility effects of Pueraria mirifica in rat. J Sci Fac CMU 1987; 13(1): 19–28Google Scholar
  74. 74.
    Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res 1994; 9(8): 1137–1141PubMedCrossRefGoogle Scholar
  75. 75.
    Limpaphayom KK, Taechakraichana N, Jaisamrarn U, Bunyavejchevin S, Chaikittisilpa S, Poshyachinda M, Taechamahachai C, Havanond P, Onthuam Y, Lumbiganon P, Kamolratanakul P. Prevalence of osteopenia and osteoporosis in Thai women. Menopause 2001; 8(1): 65–69PubMedCrossRefGoogle Scholar
  76. 76.
    Compston JE. Sex steroids and bone. Physiol Rev 2001; 81(1): 419–447PubMedGoogle Scholar
  77. 77.
    Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006; 116(5): 1186–1194PubMedCrossRefGoogle Scholar
  78. 78.
    Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982; 70(4): 716–723PubMedCrossRefGoogle Scholar
  79. 79.
    Ohta H, Makita K, Komukai S, Nozawa S. Bone resorption versus estrogen loss following oophorectomy and menopause. Maturitas 2002; 43(1): 27–33PubMedCrossRefGoogle Scholar
  80. 80.
    Fontanges E, Fontana A, Delmas P. Osteoporosis and breast cancer. Joint Bone Spine 2004; 71(2): 102–110PubMedCrossRefGoogle Scholar
  81. 81.
    Sulak PJ. Endometrial cancer and hormone replacement therapy. Appropriate use of progestins to oppose endogenous and exogenous estrogen. Endocrinol Metab Clin North Am 1997; 26(2): 399–412PubMedCrossRefGoogle Scholar
  82. 82.
    Canavan TP, Doshi NR. Endometrial cancer. Am Fam Physician 1999; 59(11): 3069–3077PubMedGoogle Scholar
  83. 83.
    Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health. J Am Coll Cardiol 2000; 35(6): 1403–1410PubMedCrossRefGoogle Scholar
  84. 84.
    Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab 2003; 21(5): 268–275PubMedCrossRefGoogle Scholar
  85. 85.
    Wang X, Wu J, Chiba H, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in castrated male mice. Metabolism 2005; 54(11): 1536–1541PubMedCrossRefGoogle Scholar
  86. 86.
    Onoe Y, Miyaura C, Ohta H, Nozawa S, Suda T. Expression of estrogen receptor β in rat bone. Endocrinology 1997; 138(10): 4509–4512PubMedCrossRefGoogle Scholar
  87. 87.
    Trisomboon H, Malaivijitnond S, Suzuki J, Hamada Y, Watanabe G, Taya K. Long-term treatment effects of Pueraria mirifica phytoestrogens on parathyroid hormone and calcium levels in aged menopausal cynomolgus monkeys. J Reprod Dev 2004; 50(6): 639–645PubMedCrossRefGoogle Scholar
  88. 88.
    Yamaguchi M, Gao YH. Inhibitory effect of genistein on bone resorption in tissue culture. Biochem Pharmacol 1998; 55(1): 71–76PubMedCrossRefGoogle Scholar
  89. 89.
    Gao YH, Yamaguchi M. Anabolic effect of daidzein on cortical bone in tissue culture: comparison with genistein effect. Mol Cell Biochem 1999; 194(1–2): 93–97PubMedCrossRefGoogle Scholar
  90. 90.
    Sugimoto E, Yamaguchi M. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol 2000; 59(5): 471–475PubMedCrossRefGoogle Scholar
  91. 91.
    Gao YH, Yamaguchi M. Suppressive effect of genistein on rat bone osteoclasts: apoptosis is induced through Ca2+ signaling. Biol Pharm Bull 1999; 22(8): 805–809PubMedCrossRefGoogle Scholar
  92. 92.
    Chandeying V, Sangthawan M. Efficacy comparison of Pueraria mirifica (PM) against conjugated equine estrogen (CEE) with/ without medroxyprogesterone acetate (MPA) in the treatment of climacteric symptoms in perimenopausal women: phase III study. J Med Assoc Thai 2007; 90(9): 1720–1726PubMedGoogle Scholar
  93. 93.
    Lamlertkittikul S, Chandeying V. Efficacy and safety of Pueraria mirifica (Kwao Kruea Khao) for the treatment of vasomotor symptoms in perimenopausal women: phase II Study. J Med Assoc Thai 2004; 87(1): 33–40PubMedGoogle Scholar
  94. 94.
    Wattanapitayakul SK, Chularojmontri L, Srichirat S. Effects of Pueraria mirifica on vascular function of ovariectomized rabbits. J Med Assoc Thai 2005; 88(Suppl 1): S21–S29PubMedGoogle Scholar
  95. 95.
    Manonai J, Chittacharoen A, Theppisai U, Theppisai H. Effect of Pueraria mirifica on vaginal health. Menopause 2007; 14(5): 919–924PubMedCrossRefGoogle Scholar
  96. 96.
    Manonai J, Seif C, Böhler G, Jünemann KP. The effect of Pueraria mirifica on cytologic and urodynamic findings in ovariectomized rats. Menopause 2009; 16(2): 350–356PubMedCrossRefGoogle Scholar
  97. 97.
    Xu H, Gouras GK, Greenfield JP, Vincent B, Naslund J, Mazzarelli L, Fried G, Jovanovic JN, Seeger M, Relkin NR, Liao F, Checler F, Buxbaum JD, Chait BT, Thinakaran G, Sisodia SS, Wang R, Greengard P, Gandy S. Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat Med 1998; 4(4): 447–451PubMedCrossRefGoogle Scholar
  98. 98.
    McEwen BS. Clinical review 108: The molecular and neuroanatomical basis for estrogen effects in the central nervous system. J Clin Endocrinol Metab 1999; 84(6): 1790–1797PubMedCrossRefGoogle Scholar
  99. 99.
    Frick KM, Fernandez SM, Bulinski SC. Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience 2002; 115(2): 547–558PubMedCrossRefGoogle Scholar
  100. 100.
    Sucontphunt A, De-Eknamkul W, Nimmannit U, Dan Dimitrijevich S, Gracy RW. Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts. J Nat Med 2011; 65(1): 1–8PubMedCrossRefGoogle Scholar
  101. 101.
    Chindewa R, Lapanantasin S, Sanvarinda Y, Chongthammakun S. Pueraria mirifica, phytoestrogen-induced change in synaptophysin expression via estrogen receptor in rat hippocampal neuron. J Med Assoc Thai 2008; 91(2): 208–214PubMedGoogle Scholar
  102. 102.
    Cherdshewasart W, Panriansaen R, Picha P. Pretreatment with phytoestrogen-rich plant decreases breast tumor incidence and exhibits lower profile of mammary ERalpha and ERbeta. Maturitas 2007; 58(2): 174–181PubMedCrossRefGoogle Scholar
  103. 103.
    Phansawan B, Poungbangpho S. Antioxidant capacities of Pueraria mirifica, Stevia rebaudiana Bertoni, Curcuma longa Linn., Andrographis paniculata (Burm.f.) Nees. and Cassia alata Linn. for the development of dietary supplement. Kasetsart J (Nat Sci) 2007; 41(3): 548–554Google Scholar
  104. 104.
    Cherdshewasart W, Sutjit W. Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine 2008; 15(1–2): 38–43PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Primate Research Unit, Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations