Frontiers of Medicine

, Volume 5, Issue 1, pp 94–100 | Cite as

Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study

  • Ranhua Jiang
  • Zhibo Han
  • Guangsheng Zhuo
  • Xiaodan Qu
  • Xue Li
  • Xin Wang
  • Yuankang Shao
  • Shimin Yang
  • Zhong Chao Han
Research Article

Abstract

Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PDMSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22–1.51) × 106/kg, with an average of 1.35 × 106/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7±18.7 to 34.7±13.4 IU (P<0.01), and the C-peptide level was increased from 4.1 ±3.7 ng/mL to 5.6 ±3.8 ng/mL (P<0.05) respectively after therapy. In 4 of 10 responders their insulin doses reduced more than 50% after infusion. The mean levels of insulin and C-peptide at each time point in a total of 10 patients was higher after treatment (P<0.05). No fever, chills, liver damage and other side effects were reported. The renal function and cardiac function were improved after infusion. The results obtained from this pilot clinical trial indicate that transplantation of PD-MSC represents a simple, safe and effective therapeutic approach for T2D patients with islet cell dysfunction. Further large-scale, randomized and well-controlled clinical studies will be required to substantiate these observations.

Keywords

placenta stem cells treatment of type 2 diabetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang W, Lu J, Weng J P, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. N Engl J Med, 2010, 362(12): 1090–1101PubMedCrossRefGoogle Scholar
  2. 2.
    Hu D, Sun L, Fu P, Xie J, Lu J, Zhou J, Yu D, Whelton P K, He J, Gu D. Prevalence and risk factors for type 2 diabetes mellitus in the Chinese adult population: the InterASIA Study. Diabetes Res Clin Pract, 2009, 84(3): 288–295PubMedCrossRefGoogle Scholar
  3. 3.
    Kobayashi N, Yuasa T, Okitsu T. Regenerative medicine for diabetes mellitus. Cell Transplant, 2009, 18(5): 491–496PubMedGoogle Scholar
  4. 4.
    Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, Li H, Li H, Jiang Y, An Y, Shuai Y, Zhang B, Zhang J, Thompson TJ, Gerzoff RB, Roglic G, Hu Y, Bennett PH. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet, 2008; 24:371 (9626):1783–1789CrossRefGoogle Scholar
  5. 5.
    Ciceri F, Piemonti L. Bone marrow and pancreatic islet: an old story with new perspectives. Cell Transplant, 2010 Aug 17Google Scholar
  6. 6.
    Kodama S, Kühtreiber W, Fujimura S, Dale E A, Faustman D L. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science, 2003, 302(5648): 1223–1227PubMedCrossRefGoogle Scholar
  7. 7.
    Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143–147PubMedCrossRefGoogle Scholar
  8. 8.
    Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 2000, 28(8): 875–884PubMedCrossRefGoogle Scholar
  9. 9.
    Gronthos S, Franklin D M, Leddy H A, Robey P G, Storms R W, Gimble J M. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 2001, 189(1): 54–63PubMedCrossRefGoogle Scholar
  10. 10.
    Erices A, Conget P, Minguell J J. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000, 109(1): 235–242PubMedCrossRefGoogle Scholar
  11. 11.
    Lu L L, Liu Y J, Yang S G, Zhao Q J, Wang X, Gong W, Han Z B, Xu Z S, Lu Y X, Liu D, Chen Z Z, Han Z C. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006, 91(8): 1017–1026PubMedGoogle Scholar
  12. 12.
    In’ t Anker P S, Scherjon S A, Kleijburg-van der Keur C, de Groot-Swings G M, Claas F H, Fibbe W E, Kanhai H H. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004, 22(7): 1338–1345CrossRefGoogle Scholar
  13. 13.
    Zheng C L, Yang S G, Guo Z X, Liao W, Zhang L, Yang R, Han Z C. Human multipotent mesenchymal stromal cells from fetal lung expressing pluripotent markers and differentiating into cell types of three germ layers. Cell Transplant, 2009, 18(10): 1093–1109PubMedCrossRefGoogle Scholar
  14. 14.
    Chen K, Wang D, Du W T, Han Z B, Ren H, Chi Y, Yang S G, Zhu D, Bayard F, Han ZC. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol, 2010, 135(3): 448–458PubMedCrossRefGoogle Scholar
  15. 15.
    Wang D, Chen K, Du W T, Han Z B, Ren H, Chi Y, Yang S G, Bayard F, Zhu D, Han Z C. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res, 2010, 316(15): 2414–2423PubMedCrossRefGoogle Scholar
  16. 16.
    Liao W B, Xie J, Zhong J, Liu Y J, Du L, Zhou B, Xu J, Liu P X, Yang S G, Wang J M, Han Z B, Han Z C. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation, 2009, 87(3): 350–359PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao Q J, Ren H Y, Li X Y, Chen Z, Zhang X Y, Gong W, Liu Y J, Pang T X, Han Z C. Differentiation of Human umbilical cord mesenchymal stem cells into low immunogenic hepatocyte-like cells. Cytotherapy, 2009, 11(4): 414–426PubMedCrossRefGoogle Scholar
  18. 18.
    Wu K H, Mo X M, Zhou B, Lu S H, Yang S G, Liu Y L, Han Z C. Cardiac potential of stem cells from whole human umbilical cord tissue. J Cell Biochem, 2009, 107(5): 926–932PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia-Olmo D, Herreros D, Pascual I, Pascual J A, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum, 2009, 52(1): 79–86PubMedCrossRefGoogle Scholar
  20. 20.
    Hare J M, Traverse J H, Henry T D, Dib N, Strumpf R K, Schulman S P, Gerstenblith G, DeMaria A N, Denktas A E, Gammon R S, Hermiller J B Jr, Reisman M A, Schaer G L, Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol, 2009, 54(24): 2277–2286PubMedCrossRefGoogle Scholar
  21. 21.
    Horwitz E M, Prockop D J, Fitzpatrick L A, Koo WW, Gordon P L, Neel M, Sussman M, Orchard P, Marx J C, Pyeritz R E, Brenner M K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 1999, 5(3): 309–313PubMedCrossRefGoogle Scholar
  22. 22.
    Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, Monroy R, Uberti J. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant, 2009, 15(7): 804–811PubMedCrossRefGoogle Scholar
  23. 23.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler R M, Bacigalupo A, Fibbe W, Ringdén O. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 2008, 371(9624): 1579–1586PubMedCrossRefGoogle Scholar
  24. 24.
    Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004, 363(9419): 1439–1441PubMedCrossRefGoogle Scholar
  25. 25.
    Lee P H, Kim JW, Bang O Y, Ahn Y H, Joo I S, Huh K. Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther, 2008, 83(5): 723–730PubMedCrossRefGoogle Scholar
  26. 26.
    Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma R R, Saluja K, Dutta P, Walia R, Minz R, Bhadada S, Das S, Ramakrishnan S. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev, 2009, 18(10): 1407–1416PubMedCrossRefGoogle Scholar
  27. 27.
    Lin G, Wang G, Liu G, Yang L J, Chang L J, Lue T F, Lin C S. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev, 2009, 18(10): 1399–1406PubMedCrossRefGoogle Scholar
  28. 28.
    Liu M, Han Z C. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med, 2008, 12(4): 1155–1168PubMedCrossRefGoogle Scholar
  29. 29.
    Santana A, Enseñat-Waser R, Arribas M I, Reig J A, Roche E. Insulin-producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med, 2006, 10(4): 866–883PubMedCrossRefGoogle Scholar
  30. 30.
    Wang H S, Shyu J F, Shen WS, Hsu H C, Chi T C, Chen C P, Huang S W, Shyr Y M, Tang K T, Chen T H. Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant, 2010 Aug 18Google Scholar
  31. 31.
    Zhang Y, Dou Z. Transdifferentiation of bone marrow mesenchymal stem cell into islet cells to treat diabetes mellitus. J Cell Biol, 2007, 29: 1–5Google Scholar
  32. 32.
    Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, Atkinson K. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol, 2009, 144(4): 571–579PubMedCrossRefGoogle Scholar
  33. 33.
    Tran T C, Kimura K, Nagano M, Yamashita T, Ohneda K, Sugimori H, Sato F, Sakakibara Y, Hamada H, Yoshikawa H, Hoang S N, Ohneda O. Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol, 2011, 226(1): 224–235PubMedCrossRefGoogle Scholar
  34. 34.
    Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004, 22(5): 649–658PubMedCrossRefGoogle Scholar
  35. 35.
    Hwang J H, Shim S S, Seok O S, Lee H Y, Woo S K, Kim B H, Song H R, Lee J K, Park Y K. Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci, 2009, 24(4): 547–554PubMedCrossRefGoogle Scholar
  36. 36.
    Parolini O, Alviano F, Bagnara G P, Bilic G, Bühring H J, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz C B, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi T A, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom S C. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 2008, 26(2): 300–311PubMedCrossRefGoogle Scholar
  37. 37.
    Dzierzak E, Robin C. Placenta as a source of hematopoietic stem cells. Trends Mol Med, 2010, 16(8): 361–367PubMedCrossRefGoogle Scholar
  38. 38.
    Lee L K, Ueno M, Van Handel B, Mikkola H K. Placenta as a newly identified source of hematopoietic stem cells. Curr Opin Hematol, 2010, 17(4): 313–318PubMedCrossRefGoogle Scholar
  39. 39.
    Evangelista M, Soncini M, Parolini O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology, 2008, 58(1): 33–42PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou J, Ma X J, Bao Y Q, Pan X P, Lu W, Hu C, Xiang K S, Jia W P. Study on prevalence of latent autoimmune diabetes in adults and its relationship with metabolic syndrome. Zhonghua Yi Xue Za Zhi, 2009, 89(18): 1250–1254PubMedGoogle Scholar
  41. 41.
    Salem H K, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 2010, 28(3):585–596PubMedGoogle Scholar
  42. 42.
    Phinny D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells, 2007, 25(11):2896–2902CrossRefGoogle Scholar
  43. 43.
    Horwitz E M, Prather W R. Cytokines as the major mechanism of mesenchymal stem cell clinical activity: expanding the spectrum of cell therapy. Isr Med Assoc J, 2009, 11(4): 209–211PubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ranhua Jiang
    • 1
  • Zhibo Han
    • 2
  • Guangsheng Zhuo
    • 3
  • Xiaodan Qu
    • 1
  • Xue Li
    • 1
  • Xin Wang
    • 3
  • Yuankang Shao
    • 3
  • Shimin Yang
    • 1
  • Zhong Chao Han
    • 2
  1. 1.Liaoyang Diabetic HospitalLiaoyangChina
  2. 2.National Engineering Research Center of Stem Cells, Institute of Hematology and Blood Disease HospitalChinese Academy of Medical Sciences and Peking Union of Medical CollegeTianjinChina
  3. 3.Beijing Health-Biotech. Co., Ltd.BeijingChina

Personalised recommendations