Frontiers of Medicine

, Volume 5, Issue 1, pp 26–32 | Cite as

Therapeutic potential of stem cell in liver regeneration



Liver transplantation is the only life-saving procedure for patients with end-stage liver disease. However, its potential benefits are hampered by many disadvantages, such as the relative shortage of donors, operative risks, and high costs. These issues have prompted the search for new alternative therapies for irreversible liver disease. Stem cell therapy, with the ability for self-renewal and potential for multilineage differentiation, is a promising alternative approach. Several studies have demonstrated that transplantation of hepatic stem/progenitor cells or hepatocyte-like cells derived from multipotent stem cells leads to donor cell-mediated repopulation of the liver and improved survival rates in experimental models of liver disease. However, a registered clinical application based on stem cell technology will take at least an additional 5 to 10 years because of some limitations; e.g. the lack of suitable cell sources and risk of teratoma formation. This review summarizes the general understanding of the therapeutic potentials of stem cells in liver disease, including the sources, mechanisms, and delivery methods of hepatic stem cells in liver regeneration, and discusses some challenges for their therapeutic application.


stem cell liver disease regenerative medicine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Leary J G, Lepe R, Davis G L. Indications for liver transplantation. Gastroenterology, 2008, 134(6): 1764–1776PubMedCrossRefGoogle Scholar
  2. 2.
    Kung J W, Forbes S J. Stem cells and liver repair. Curr Opin Biotechnol, 2009, 20(5): 568–574PubMedCrossRefGoogle Scholar
  3. 3.
    Ogawa S, Miyagawa S. Potentials of regenerative medicine for liver disease. Surg Today, 2009, 39(12): 1019–1025PubMedCrossRefGoogle Scholar
  4. 4.
    Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler N C, Stöckle U, Nussler A. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg, 2009, 394(6): 985–997PubMedCrossRefGoogle Scholar
  5. 5.
    Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol, 2009, 217(2): 282–298PubMedCrossRefGoogle Scholar
  6. 6.
    Fausto N, Campbell J S, Riehle K J. Liver regeneration. Hepatology, 2006, 43(Suppl 1): S45–S53PubMedCrossRefGoogle Scholar
  7. 7.
    Roskams T A, Theise N D, Balabaud C, Bhagat G, Bhathal P S, Bioulac-Sage P, Brunt E M, Crawford J M, Crosby H A, Desmet V, Finegold M J, Geller S A, Gouw A S, Hytiroglou P, Knisely A S, Kojiro M, Lefkowitch J H, Nakanuma Y, Olynyk J K, Park Y N, Portmann B, Saxena R, Scheuer P J, Strain A J, Thung S N, Wanless I R, West A B. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology, 2004, 39(6): 1739–1745PubMedCrossRefGoogle Scholar
  8. 8.
    Dorrell C, Grompe M. Liver repair by intra- and extrahepatic progenitors. Stem Cell Rev, 2005, 1(1): 61–64PubMedCrossRefGoogle Scholar
  9. 9.
    Lee J S, Heo J, Libbrecht L, Chu I S, Kaposi-Novak P, Calvisi D F, Mikaelyan A, Roberts L R, Demetris A J, Sun Z, Nevens F, Roskams T, Thorgeirsson S S. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med, 2006, 12(4): 410–416PubMedCrossRefGoogle Scholar
  10. 10.
    Tanaka M, Okabe M, Suzuki K, Kamiya Y, Tsukahara Y, Saito S, Miyajima A. Mouse hepatoblasts at distinct developmental stages are characterized by expression of EpCAM and DLK1: drastic change of EpCAM expression during liver development. Mech Dev, 2009, 126(8–9): 665–676PubMedCrossRefGoogle Scholar
  11. 11.
    Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y, Tsujimura T, Nakamura K, Miyajima A. Potential hepatic stem cells reside in EpCAM + cells of normal and injured mouse liver. Development, 2009, 136(11): 1951–1960PubMedCrossRefGoogle Scholar
  12. 12.
    Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao H L, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth M E, Reid L M. Human hepatic stem cells from fetal and postnatal donors. J Exp Med, 2007, 204(8): 1973–1987PubMedCrossRefGoogle Scholar
  13. 13.
    Sangan C B, Tosh D. Hepatic progenitor cells. Cell Tissue Res, 2010, 342(2): 131–137PubMedCrossRefGoogle Scholar
  14. 14.
    Oertel M, Menthena A, Dabeva MD, Shafritz D A. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology, 2006, 130(2): 507–520PubMedCrossRefGoogle Scholar
  15. 15.
    Oertel M, Menthena A, Chen Y Q, Teisner B, Jensen C H, Shafritz D A. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology, 2008, 134(3): 823–832PubMedCrossRefGoogle Scholar
  16. 16.
    Mahieu-Caputo D, Allain J E, Branger J, Coulomb A, Delgado J P, Andreoletti M, Mainot S, Frydman R, Leboulch P, Di Santo J P, Capron F, Weber A. Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Ther, 2004, 15(12): 1219–1228PubMedCrossRefGoogle Scholar
  17. 17.
    Kallis Y N, Alison M R, Forbes S J. Bone marrow stem cells and liver disease. Gut, 2007, 56(5): 716–724PubMedCrossRefGoogle Scholar
  18. 18.
    Petersen B E, Bowen W C, Patrene K D, Mars W M, Sullivan A K, Murase N, Boggs S S, Greenberger J S, Goff J P. Bone marrow as a potential source of hepatic oval cells. Science, 1999, 284(5417): 1168–1170PubMedCrossRefGoogle Scholar
  19. 19.
    Gilchrist E S, Plevris J N. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl, 2010, 16(2): 118–129PubMedCrossRefGoogle Scholar
  20. 20.
    Houlihan D D, Newsome P N. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology, 2008, 135(2): 438–450PubMedCrossRefGoogle Scholar
  21. 21.
    Levicar N, Pai M, Habib N A, Tait P, Jiao L R, Marley S B, Davis J, Dazzi F, Smadja C, Jensen S L, Nicholls J P, Apperley J F, Gordon M Y. Long-term clinical results of autologous infusion of mobilized adult bone marrow derived CD34 + cells in patients with chronic liver disease. Cell Prolif, 2008, 41(Suppl 1): 115–125PubMedGoogle Scholar
  22. 22.
    Tajima F, Tsuchiya H, Nishikawa K, Kataoka M, Hisatome I, Shiota G. Hepatocyte growth factor mobilizes and recruits hematopoietic progenitor cells into liver through a stem cell factor-mediated mechanism. Hepatol Res, 2010, 40(7): 711–719PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaguchi K, Itoh K, Masuda T, Umemura A, Baum C, Itoh Y, Okanoue T, Fujita J. In vivo selection of transduced hematopoietic stem cells and little evidence of their conversion into hepatocytes in vivo. J Hepatol, 2006, 45(5): 681–687PubMedCrossRefGoogle Scholar
  24. 24.
    Friedenstein A J, Chailakhjan R K, Lalykina K S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 1970, 3(4): 393–403PubMedGoogle Scholar
  25. 25.
    Lee K D, Kuo T K, Whang-Peng J, Chung Y F, Lin C T, Chou S H, Chen J R, Chen Y P, Lee O K. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004, 40(6): 1275–1284PubMedCrossRefGoogle Scholar
  26. 26.
    Liu Z J, Zhuge Y, Velazquez O C. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem, 2009, 106(6): 984–991PubMedCrossRefGoogle Scholar
  27. 27.
    Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler J G, Dollinger M M, Fleig W E, Christ B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut, 2009, 58(4): 570–581PubMedCrossRefGoogle Scholar
  28. 28.
    Cho K A, Ju S Y, Cho S J, Jung Y J, Woo S Y, Seoh J Y, Han H S, Ryu K H. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow. Cell Biol Int, 2009, 33(7): 772–777PubMedCrossRefGoogle Scholar
  29. 29.
    Kuo T K, Hung S P, Chuang C H, Chen C T, Shih Y R, Fang S C, Yang V W, Lee O K. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 2008; 134(7): 2111–2121, 2121.e1–3PubMedCrossRefGoogle Scholar
  30. 30.
    Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quinn G, Okochi H, Ochiya T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 2007, 46(1): 219–228PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Z, Lu H, Wang Y C, Cong X Q. Human embryonic stem cells and liver diseases: from basic research to future clinical application. J Dig Dis, 2008, 9(1): 14–19PubMedCrossRefGoogle Scholar
  32. 32.
    Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 2007, 45(5): 1229–1239PubMedCrossRefGoogle Scholar
  33. 33.
    Dan Y Y, Yeoh G C. Liver stem cells: a scientific and clinical perspective. J Gastroenterol Hepatol, 2008, 23(5): 687–698PubMedCrossRefGoogle Scholar
  34. 34.
    Dalgetty D M, Medine C N, Iredale J P, Hay D C. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol, 2009, 297(2): G241–G248PubMedCrossRefGoogle Scholar
  35. 35.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676PubMedCrossRefGoogle Scholar
  36. 36.
    Okita K, Ichisaka T, Yamanaka S. Generation of germlinecompetent induced pluripotent stem cells. Nature, 2007, 448(7151): 313–317PubMedCrossRefGoogle Scholar
  37. 37.
    Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920PubMedCrossRefGoogle Scholar
  38. 38.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324PubMedCrossRefGoogle Scholar
  39. 39.
    Lowry W E, Richter L, Yachechko R, Pyle A D, Tchieu J, Sridharan R, Clark A T, Plath K. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA, 2008, 105(8): 2883–2888PubMedCrossRefGoogle Scholar
  40. 40.
    Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141–146PubMedCrossRefGoogle Scholar
  41. 41.
    Kim J B, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo M J, Ruau D, Han D W, Zenke M, Schöler H R. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454(7204): 646–650PubMedCrossRefGoogle Scholar
  42. 42.
    Carey B W, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA, 2009, 106(1): 157–162PubMedCrossRefGoogle Scholar
  43. 43.
    Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H, Ding S. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 2009, 4(1): 16–19PubMedCrossRefGoogle Scholar
  44. 44.
    Theise N D, Nimmakayalu M, Gardner R, Illei P B, Morgan G, Teperman L, Henegariu O, Krause D S. Liver from bone marrow in humans. Hepatology, 2000, 32(1): 11–16PubMedCrossRefGoogle Scholar
  45. 45.
    Alison MR, Poulsom R, Jeffery R, Dhillon A P, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright N A. Hepatocytes from non-hepatic adult stem cells. Nature, 2000, 406(6793): 257PubMedCrossRefGoogle Scholar
  46. 46.
    Sato Y, Araki H, Kato J, Nakamura K, Kawano Y, Kobune M, Sato T, Miyanishi K, Takayama T, Takahashi M, Takimoto R, Iyama S, Matsunaga T, Ohtani S, Matsuura A, Hamada H, Niitsu Y. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005, 106(2): 756–763PubMedCrossRefGoogle Scholar
  47. 47.
    Jang Y Y, Collector M I, Baylin S B, Diehl A M, Sharkis S J. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol, 2004, 6(6): 532–539PubMedCrossRefGoogle Scholar
  48. 48.
    Willenbring H, Bailey A S, Foster M, Akkari Y, Dorrell C, Olson S, Finegold M, Fleming W H, Grompe M. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med, 2004, 10(7): 744–748PubMedCrossRefGoogle Scholar
  49. 49.
    Quintana-Bustamante O, Alvarez-Barrientos A, Kofman A V, Fabregat I, Bueren J A, Theise N D, Segovia J C. Hematopoietic mobilization in mice increases the presence of bone marrow-derived hepatocytes via in vivo cell fusion. Hepatology, 2006, 43(1): 108–116PubMedCrossRefGoogle Scholar
  50. 50.
    Rodić N, Rutenberg MS, Terada N. Cell fusion and reprogramming: resolving our transdifferences. Trends Mol Med, 2004, 10(3): 93–96PubMedCrossRefGoogle Scholar
  51. 51.
    Dahlke M H, Popp F C, Larsen S, Schlitt H J, Rasko J E. Stem cell therapy of the liver—fusion or fiction? Liver Transpl, 2004, 10(4): 471–479PubMedCrossRefGoogle Scholar
  52. 52.
    Camargo F D, Finegold M, Goodell M A. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest, 2004, 113(9): 1266–1270PubMedGoogle Scholar
  53. 53.
    Krause P, Saghatolislam F, Koenig S, Unthan-Fechner K, Probst I. Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim, 2009, 45(5–6): 205–212PubMedCrossRefGoogle Scholar
  54. 54.
    Woodrow K A, Wood MJ, Saucier-Sawyer J K, Solbrig C, Saltzman W M. Biodegradable meshes printed with extracellular matrix proteins support micropatterned hepatocyte cultures. Tissue Eng Part A, 2009, 15(5): 1169–1179PubMedCrossRefGoogle Scholar
  55. 55.
    Wen F, Chang S, Toh Y C, Arooz T, Zhuo L, Teoh S H, Yu H. Development of dual-compartment perfusion bioreactor for serial coculture of hepatocytes and stellate cells in poly(lactic-co-glycolic acid)-collagen scaffolds. J Biomed Mater Res B Appl Biomater, 2008, 87(1): 154–162PubMedGoogle Scholar
  56. 56.
    Jindal R, Nahmias Y, Tilles A W, Berthiaume F, Yarmush M L. Amino acid-mediated heterotypic interaction governs performance of a hepatic tissue model. FASEB J, 2009, 23(7): 2288–2298PubMedCrossRefGoogle Scholar
  57. 57.
    Xiong A, Austin TW, Lagasse E, Uchida N, Tamaki S, Bordier B B, Weissman I L, Glenn J S, Millan M T. Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells. Tissue Eng Part A, 2008, 14(6): 995–1006PubMedCrossRefGoogle Scholar
  58. 58.
    Hoshiba T, Cho C S, Murakawa A, Okahata Y, Akaike T. The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes. Biomaterials, 2006, 27(26): 4519–4528PubMedCrossRefGoogle Scholar
  59. 59.
    Hoshiba T, Wakejima M, Cho C S, Shiota G, Akaike T. Different regulation of hepatocyte behaviors between natural extracellular matrices and synthetic extracellular matrices by hepatocyte growth factor. J Biomed Mater Res A, 2008, 85(1): 228–235PubMedGoogle Scholar
  60. 60.
    Hidaka M, Su G N, Chen J K, Mukaisho K, Hattori T, Yamamoto G. Transplantation of engineered bone tissue using a rotary threedimensional culture system. In Vitro Cell Dev Biol Anim, 2007, 43(2): 49–58PubMedCrossRefGoogle Scholar
  61. 61.
    Chen Z, Qi L Z, Zeng R, Li H Y, Dai L J. Stem cells and hepatic cirrhosis. Panminerva Med, 2010, 52(2): 149–165PubMedGoogle Scholar
  62. 62.
    Russo F P, Alison M R, Bigger B W, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale J P, Forbes S J. The bone marrow functionally contributes to liver fibrosis. Gastroenterology, 2006, 130(6): 1807–1821PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated HospitalChongqing Medical UniversityChongqingChina

Personalised recommendations