Skip to main content
Log in

Abnormal expression of c-Myc in human bronchial epithelial cells malignantly transformed by anti-BPDE

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) is a metabolite of benzo[a]pyrene (B[a]P) and acts as a potent mutagen in mammalian systems. However, molecular mechanisms related to anti-BPDE-induced carcinogenesis are poorly understood. Here, we investigated the expression of proto-oncogene c-myc in human bronchial epithelial cells (16HBE-T) transformed by exposure to anti-BPDE. The levels of mRNA and protein of c-Myc were examined in the 16HBE-T and vehicletreated control cells (16HBE-N) by using different methods respectively, including reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative real-time PCR (Q-PCR), western blot and immunocytochemical methods. The level of c-myc mRNA appeared to be significantly increased in 16HBE-T, as compared with those of the 16HBE-N. Likewise, the expression of c-Myc protein was significantly enhanced as compared with those of the control cells. Moreover, the localization of c-Myc protein shows mainly nuclear staining in 16HBE-T. In conclusion, the abnormal expression of c-Myc was present in anti-BPDE malignantly transformed 16HBE cells, which may be involved in the carcinogenesis molecular mechanism of anti-BPDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavanello S, Pulliero A, Saia B O, Clonfero E. Determinants of anti-benzo[a]pyrene diol epoxide-DNA adduct formation in lymphomonocytes of the general population. Mutat Res, 2006, 611(1–2): 54–63

    PubMed  CAS  Google Scholar 

  2. Burdick A D, Davis J W 2nd, Liu K J, Hudson L G, Shi H, Monske ML, Burchiel SW. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res, 2003, 63(22): 7825–7833

    PubMed  CAS  Google Scholar 

  3. Gunter M J, Divi R L, Kulldorff M, Vermeulen R, Haverkos K J, Kuo MM, Strickland P, Poirier MC, Rothman N. Sinha R. Leukocyte polycyclic aromatic hydrocarbon-DNA adduct formation and colorectal adenoma. Carcinogenesis, 2007, 28(7): 1426–1429

    Article  PubMed  CAS  Google Scholar 

  4. Conney A H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res, 1982, 42(12): 4875–4917

    PubMed  CAS  Google Scholar 

  5. Rojas M, Marie B, Vignaud J M, Martinet N, Siat J, Grosdidier G, Cascorbi I. Alexandrov K. High DNA damage by benzo[a]pyrene 7,8-diol-9,10-epoxide in bronchial epithelial cells from patients with lung cancer: comparison with lung parenchyma. Cancer Lett, 2004, 207(2): 157–163

    Article  PubMed  CAS  Google Scholar 

  6. Schwerdtle T, Seidel A, Hartwig A. Effect of soluble and particulate nickel compounds on the formation and repair of stable benzo[a]pyrene DNA adducts in human lung cells. Carcinogenesis, 2002, 23(1): 47–53

    Article  PubMed  CAS  Google Scholar 

  7. Denissenko M F, Pao A, Tang M, Pfeifer G P. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 1996, 274(5286): 430–432

    Article  PubMed  CAS  Google Scholar 

  8. Shen Y M, Troxel A B, Vedantam S, Penning T M. Field J. Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[a]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection. Chem Res Toxicol, 2006, 19(11): 1441–1450

    Article  PubMed  CAS  Google Scholar 

  9. Wu X, Zhao Y, Honn S E, Tomlinson G E, Minna J D, Hong W K, Spitz M R. Benzo[a]pyrene diol epoxide-induced 3p21.3 aberrations and genetic predisposition to lung cancer. Cancer Res, 1998, 58(8): 1605–1608

    PubMed  CAS  Google Scholar 

  10. Pavanello S, Favretto D, Brugnone F, Mastrangelo G, Dal Pra G, Clonfero E. HPLC/fluorescence determination of anti-BPDE-DNA adducts in mononuclear white blood cells from PAH-exposed humans. Carcinogenesis, 1999, 20(3): 431–435

    Article  PubMed  CAS  Google Scholar 

  11. Srivastava S K, Bansal P, Oguri T, Lazo J S, Singh S V. Cell division cycle 25B phosphatase is essential for benzo(a)pyrene-7,8-Diol-9,10-epoxide induced neoplastic transformation. Cancer Res, 2007, 67(19): 9150–9157

    Article  PubMed  CAS  Google Scholar 

  12. Nasi S, Ciarapica R, Jucker R, Rosati J and Soucek L. Making decisions through Myc. FEBS Letters, 2001, 490(3): 153–162

    Article  PubMed  CAS  Google Scholar 

  13. Richardson G E, Johnson B E. The biology of lung cancer. Semin Oncol, 1993, 20(2): 105–127

    PubMed  CAS  Google Scholar 

  14. Broers J L, Viallet J, Jensen SM, Pas H, Travis WD, Minna J D, Linnoila R I. Expression of c-myc in progenitor cells of the bronchopulmonary epithelium and in a large number of nonsmall cell lung cancers. Am J Respir Cell Mol Biol, 1993, 9(1): 33–43

    PubMed  CAS  Google Scholar 

  15. Zajac-Kaye M. Myc oncogene: a key component in cell cycle regulation and its implication for lung cancer. Lung Cancer, 2001, 34(Suppl 2): S43–S46

    Article  PubMed  Google Scholar 

  16. Jiang Y, Chen J. Chen X. Malignant transformation of human bronchial epithelial cells induced by benzo(a)pyrene metabolite dihydroxyepoxy benzo pyrene. Weisheng Yanjiu, 2001, 30(3): 129–131 (in Chinese)

    PubMed  CAS  Google Scholar 

  17. Quattrone A Papucci L, Santini V, Schiavone N, Noferini D, Calastretti A, Copreni E, Morelli S, Rossi Ferrini P L, Nicolin A, Capaccioli S. Quantitation of bcl-2 oncogene in cultured lymphoma/leukemia cell lines and in primary leukemia B-cells by a highly sensitive RT-PCR method. Haematologica, 1995, 80(6): 495–504

    PubMed  CAS  Google Scholar 

  18. Akerman G S, Rosenzweig B A, Domon O E, McGarrity L J, Blankenship L R, Tsai C A, Culp S J, MacGregor J T, Sistare F D, Chen J J, Morris S M. Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells. Mutat Res, 2004, 549(1–2): 43–64

    PubMed  CAS  Google Scholar 

  19. Castorina A, Tiralongo A, Cavallo D, Loreto C, Carnazza M L, Iavicoli S, Agata V D. Expression profile of ErbB receptor’s family in human alveolar type 2-like cell line A549 exposed to hexavalent chromium. Toxicol in Vitro, 2008, 22(2): 541–547

    Article  PubMed  CAS  Google Scholar 

  20. Goidin D, Mamessier A, Staquet M J, Schmitt D, Berthier-Vergnes O. Ribosomal 18SRNAprevails over glyceraldehyde-3-phosphate dehydrogenase and b-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and non invasive human melanoma cell subpopulations. Anal Biochem, 2001, 295(1): 17–21

    Article  PubMed  CAS  Google Scholar 

  21. IARC, International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, Air pollution. Part I. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related industrial exposures. Lyon, 2005, 92, in preparation

  22. Fu J, Jiang Y G, Bin X N, Ji W D, Wang M. Effect of chlorophyllin on malignant transformation cell cycle and proliferation in vitro in human bronchial epithelial cells. Zhongguo Gonggong Weisheng, 2005, 21(4): 423–424 (in Chinese)

    CAS  Google Scholar 

  23. Boxer LM, Dang C V. Translocations involving c-myc and cmyc function. Oncogene. 2001, 20(40): 5595–5610

    Article  PubMed  CAS  Google Scholar 

  24. Dang C V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol, 1999, 19(1): 1–11

    PubMed  CAS  Google Scholar 

  25. Little C D, Nam MM, Carney D N, Gazdar A F, Minna J D. Amplification and expression. of the c-myc oncogene in human lung cancer cell lines. Nature, 1983, 306(5939): 194–196

    Article  PubMed  CAS  Google Scholar 

  26. Gosney J R, Field J K, Gosney M A, Lye M D, Spandidos D A, Butt S A. c-myc oncoprotein in bronchial carcinoma: expression in all major morphological types. Anticancer Res, 1990, 10(3): 623–628

    PubMed  CAS  Google Scholar 

  27. Popescu N C, Zimonjic D B. Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med, 2002, 6(2): 151–159

    Article  PubMed  CAS  Google Scholar 

  28. Fields WR, Desiderio J G, Leonard RM, Burger E E, Brown B G, Doolittle D J. Differential c-myc expression profiles in normal human bronchial epithelial cells following treatment with benzo[a]pyrene, benzo[a]pyrene-4,5 epoxide, and benzo [a]Pyrene-7,8-9,10 diol epoxide. Mol Carcinog, 2004, 40(2): 79–89

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiguo Jiang or Xuemin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Jiang, Y. & Chen, X. Abnormal expression of c-Myc in human bronchial epithelial cells malignantly transformed by anti-BPDE. Front. Med. China 2, 380–385 (2008). https://doi.org/10.1007/s11684-008-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0073-3

Keywords

Navigation