Skip to main content
Log in

Current techniques for assessing developmental neurotoxicity of pesticides

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Organophosphates (OPs) and Pyrethroids (PRY) have been widely used in agriculture and in the home as broad spectrum insecticides, but may produce considerable risk to human health, especially to children. Children are more susceptible to environmental exposure, and concern about the neurotoxic effects of pesticide exposure on children is increasing. There is a need for better understanding of the potential developmental neurotoxicity of pesticides. Techniques for assessing developmental neurotoxicity of pesticides will continue to be developed, rendering a need for flexibility of testing paradigms. Current techniques used in evaluating the developmental neurotoxicity of OPs and PRY are presented in this review. These include: (1) In vitro techniques (PC12 cells, C6 cells and other cell models); (2) Non-mammalian models (sea urchins, zebrafish and other non-mammalian models); and (3) In vivo mammalian models (morphological techniques, neurobehavioral assessments and biomarkers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa L G. Current issues in organophosphate toxicology. Clin Chim Acta, 2006, 366(1–2): 1–13

    Article  PubMed  CAS  Google Scholar 

  2. Perry M J, Venners S A, Barr D B, Xu X. Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reprod Toxicol, 2007, 23(1): 113–118

    Article  PubMed  CAS  Google Scholar 

  3. He F, Chen S, Tang X, Gan W, Tao B, Wen B. Biological monitoring of combined exposure to organophosphates and pyrethroids. Toxicol Lett, 2002, 134(1–3): 119–124

    Article  PubMed  CAS  Google Scholar 

  4. Szpir M. New thinking on neurodevelopment. Environ Health Perspect, 2006, 114(2): A100–107

    PubMed  Google Scholar 

  5. U.S. EPA (U.S. Environmental Protection Agency). Opportunities to Improve Data Quality and Children’s Health Through the Food Quality Protection Act. 2006. Report no. 2006-P-00009. Available at: http://www.epa.gov/oig/reports/2006/20060110-2006-P-00009.pdf

  6. Eskenazi B, Marks A R, Bradman A, Harley K, Barr D B, Johnson C, Morga N, Jewell N P. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect, 2007, 115(5): 792–798

    PubMed  CAS  Google Scholar 

  7. Engel SM, Berkowitz G S, Barr D B, Teitelbaum S L, Siskind J, Meisel S J, Wetmur J G, Wolff M S. Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol, 2007, 165(12): 1397–1404

    Article  PubMed  Google Scholar 

  8. Slotkin T A, MacKillop E A, Ryde I T, Tate C A, Seidler F J. Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ Health Perspect, 2007, 115(1): 93–101

    PubMed  CAS  Google Scholar 

  9. Costa L G. Neurotoxicity testing: a discussion of in vitro alternatives. Environ Health Perspect, 1998, 106(Suppl 2): 505–510

    Article  PubMed  Google Scholar 

  10. Slotkin T A. Guidelines for developmental neurotoxicity and their impact on organophosphate pesticides: a personal view from an academic perspective. Neurotoxicology, 2004, 25(4): 631–640

    Article  PubMed  CAS  Google Scholar 

  11. Colborn T: A case for revisiting the safety of pesticides: a closer look at neurodevelopment. Environ Health Perspect, 2006, 114(1): 10–17

    PubMed  CAS  Google Scholar 

  12. Qiao D, Seidler F J, Slotkin T A. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ Health Perspect, 2001, 109(9): 909–913

    Article  PubMed  CAS  Google Scholar 

  13. Harry G J, Billingsley M, Bruinink A, Campbell I L, Classen W, Dorman D C, Galli C, Ray D, Smith R A, Tilson H A. In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect, 1998, 106(Suppl 1): 131–158

    Article  PubMed  CAS  Google Scholar 

  14. Tran V, Hoffman N, Mofunanaya A, Pryor S C, Ojugbele O, McLaughlin A, Gibson L, Bonventre J A, Flynn K, Weeks B S. Bifenthrin inhibits neurite outgrowth in differentiating PC12 cells. Med Sci Monit, 2006, 12(2): BR57–62

    PubMed  CAS  Google Scholar 

  15. Nandi A, Chandil D, Lechesal R, Pryor S C, McLaughlin A, Bonventre JA, Flynnx K, Weeks B S. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration. Med Sci Monit, 2006, 12(5): BR169–173

    PubMed  CAS  Google Scholar 

  16. Mense S M, Sengupta A, Lan C, Zhou M, Bentsman G, Volsky D J, Whyatt R M, Perera F P, Zhang L. The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes. Toxicol Sci, 2006, 93(1): 125–135

    Article  PubMed  CAS  Google Scholar 

  17. Giordano G, Afsharinejad Z, Guizzetti M, Vitalone A, Kavanagh T J, Costa L G. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol, 2007, 219(2–3): 181–189

    Article  PubMed  CAS  Google Scholar 

  18. Axelrad J C, Howard C V, McLean WG. Interactions between pesticides and components of pesticide formulations in an in vitro neurotoxicity test. Toxicology, 2002, 173(3): 259–268

    Article  PubMed  CAS  Google Scholar 

  19. Song X, Violin J D, Seidler F J, Slotkin T A. Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells. Toxicol Appl Pharmacol, 1998, 151(1): 182–191

    Article  PubMed  CAS  Google Scholar 

  20. Crumpton T L, Seidler F J, Slotkin T A. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res, 2000, 857(1–2): 87–98

    Article  PubMed  CAS  Google Scholar 

  21. Crumpton T L, Seidler F J, Slotkin T A. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Brain Res Dev Brain Res, 2000, 121(2): 189–195

    Article  PubMed  CAS  Google Scholar 

  22. Jameson R R, Seidler F J, Qiao D, Slotkin T A. Chlorpyrifos affects phenotypic outcomes in a model of mammalian neurodevelopment: critical stages targeting differentiation in PC12 cells. Environ Health Perspect, 2006, 114(5): 667–672.

    PubMed  CAS  Google Scholar 

  23. Qiao D, Seidler F J, Slotkin T A. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol Appl Pharmacol, 2005, 206(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  24. Abreu-Villaca Y, Seidler F J, Qiao D, Slotkin T A. Modeling the developmental neurotoxicity of nicotine in vitro: cell acquisition, growth and viability in PC12 cells. Brain Res Dev Brain Res, 2005, 154(2): 239–246

    Article  PubMed  CAS  Google Scholar 

  25. Tian X, Sun X, Suszkiw J B. Upregulation of tyrosine hydroxylase and downregulation of choline acetyltransferase in lead-exposed PC12 cells: the role of PKC activation. Toxicol Appl Pharmacol, 2000, 167(3): 246–252

    Article  PubMed  CAS  Google Scholar 

  26. Garcia S J, Seidler F J, Crumpton T L, Slotkin T A. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res, 2001, 891(1–2): 54–68

    Article  PubMed  CAS  Google Scholar 

  27. Garcia S J, Seidler F J, Qiao D, Slotkin T A. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Brain Res Dev Brain Res, 2002, 133(2): 151–161

    Article  PubMed  CAS  Google Scholar 

  28. Garcia S J, Seidler F J, Slotkin T A. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities. Environ Health Perspect, 2003, 111(3): 297–303

    PubMed  CAS  Google Scholar 

  29. Schuh R A, Lein P J, Beckles RA, Jett DA. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol, 2002, 182(2): 176–185

    Article  PubMed  CAS  Google Scholar 

  30. Grunwald D J, Eisen J S. Headwaters of the zebrafish — emergence of a new model vertebrate. Nat Rev Genet, 2002, 3(9): 717–724

    Article  PubMed  CAS  Google Scholar 

  31. Moens C B, Prince V E. Constructing the hindbrain: insights from the zebrafish. Dev Dyn, 2002, 224(1): 1–17

    Article  PubMed  Google Scholar 

  32. Buznikov G A, Bezuglov V V, Nikitina L A, Slotkin T A, Lauder J M. Cholinergic regulation of the sea urchin embryonic and larval development. Ross Fiziol Zh Im I M Sechenova, 2001, 87(11): 1548–1556

    PubMed  CAS  Google Scholar 

  33. Buznikov G A, Nikitina L A, Bezuglov V V, Lauder J M, Padilla S, Slotkin T A. An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ Health Perspect, 2001, 109(7): 651–661

    Article  PubMed  CAS  Google Scholar 

  34. Buznikov G A, Nikitina L A, Bezuglov V V, Milosevic I, Lazarevic L, Rogac L, Ruzdijic S, Slotkin T A, Rakic L M. Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity. Brain Res Bull, 2008, 75(1): 94–100

    Article  PubMed  CAS  Google Scholar 

  35. Shmukier Y B, Buznikov G A. Functional coupling of neurotransmitters with second messengers during cleavage divisions: facts and hypotheses. Perspect Dev Neurobiol, 1998, 5(4): 469–480

    PubMed  CAS  Google Scholar 

  36. Levin E D, Chrysanthis E, Yacisin K, Linney E. Chlorpyrifos exposure of developing zebrafish: effects on survival and longterm effects on response latency and spatial discrimination. Neurotoxicol Teratol, 2003, 25(1): 51–57

    Article  PubMed  CAS  Google Scholar 

  37. Behra M, Cousin X, Bertrand C, Vonesch J L, Biellmann D, Chatonnet A, Strahle U. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci, 2002, 5(2): 111–118

    Article  PubMed  CAS  Google Scholar 

  38. Perz-Edwards A, Hardison N L, Linney E. Retinoic acidmediated gene expression in transgenic reporter zebrafish. Dev Biol, 2001, 229(1): 89–101

    Article  PubMed  CAS  Google Scholar 

  39. Levin E D, Bencan Z, Cerutti D T. Anxiolytic effects of nicotine in zebrafish. Physiol Behav, 2007, 90(1): 54–58

    Article  PubMed  CAS  Google Scholar 

  40. Levin E D, Swain H A, Donerly S, Linney E. Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol, 2004, 26(6): 719–723

    Article  PubMed  CAS  Google Scholar 

  41. Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol, 2004, 26(6): 731–735

    Article  PubMed  CAS  Google Scholar 

  42. Sales K M, Kingston S T, Doyle K M, Purcell W M. Preliminary characterisation of an in vitro paradigm for the study of the delayed effects of organophosphorus compounds: hen embryo brain spheroids. Toxicology, 2004, 195(2–3): 187–202

    Article  PubMed  CAS  Google Scholar 

  43. Muhlig-Versen M, da Cruz A B, Tschape J A, Moser M, Buttner R, Athenstaedt K, Glynn P, Kretzschmar D. Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J Neurosci, 2005, 25(11): 2865–2873

    Article  PubMed  CAS  Google Scholar 

  44. Kretzschmar D, Hasan G, Sharma S, Heisenberg M, Benzer S. The Swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci, 1997, 17(19): 7425–7432

    PubMed  CAS  Google Scholar 

  45. Buckingham S D, Pym L, Sattelle D B. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol Biol, 2006, 322: 331–345

    Article  PubMed  CAS  Google Scholar 

  46. U.S. EPA (U.S. Environmental Protection Agency). Health Effects Test Guidelines OPPTS 870.6300, Developmental Neurotoxicity Study. 1998. available at: http://www.epa.gov/epahome/research.htm

  47. OECD (Organization of Economic Cooperation and Development) Revised Draft Guideline 426: Developmental Neurotoxicity Study. 1999. available at: http://www.oecd.org/ehs/test/health.htm

  48. Hass U. The need for developmental neurotoxicity studies in risk assessment for developmental toxicity. Reprod Toxicol, 2006, 22(2): 148–156

    Article  PubMed  CAS  Google Scholar 

  49. Kaufmann W, Groters S. Developmental neuropathology in DNT-studies-a sensitive tool for the detection and characterization of developmental neurotoxicants. Reprod Toxicol, 2006, 22(2): 196–213

    Article  PubMed  CAS  Google Scholar 

  50. Tian Y, Ishikawa H, Yamauchi T. Analysis of cytogenetic and developmental effects on pre-implantation, mid-gestation and near-term mouse embryos after treatment with trichlorfon during zygote stage. Mutat Res, 2000, 471(1–2): 37–44

    PubMed  CAS  Google Scholar 

  51. Tian Y, Yamauchi T. Micronucleus formation in 3-day mouse embryos associated with maternal exposure to chlorpyrifos during the early preimplantation period. Reprod Toxicol, 2003, 17(4): 401–405

    Article  PubMed  CAS  Google Scholar 

  52. Tian Y, Ishikawa H, Yamaguchi T, Yamauchi T, Yokoyama K. Teratogenicity and developmental toxicity of chlorpyrifos. Maternal exposure during organogenesis in mice. Reprod Toxicol, 2005, 20(2): 267–270

    Article  PubMed  CAS  Google Scholar 

  53. Roy T S, Sharma V, Seidler F J, Slotkin T A. Quantitative morphological assessment reveals neuronal and glial deficits in hippocampus after a brief subtoxic exposure to chlorpyrifos in neonatal rats. Brain Res Dev Brain Res, 2005, 155(1): 71–80

    Article  PubMed  CAS  Google Scholar 

  54. Roy T S, Seidler F J, Slotkin T A. Morphologic effects of subtoxic neonatal chlorpyrifos exposure in developing rat brain: regionally selective alterations in neurons and glia. Brain Res Dev Brain Res, 2004, 148(2): 197–206

    Article  PubMed  CAS  Google Scholar 

  55. Cory-Slechta D A, Crofton K M, Foran J A, Ross J F, Sheets L P, Weiss B, Mileson B. Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects. Environ Health Perspect, 2001, 109(Suppl 1): 79–91

    Article  PubMed  CAS  Google Scholar 

  56. Icenogle LM, Christopher N C, Blackwelder WP, Caldwell D P, Qiao D, Seidler F J, Slotkin T A, Levin E D. Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol, 2004, 26(1): 95–101

    Article  PubMed  CAS  Google Scholar 

  57. Ricceri L, Venerosi A, Capone F, Cometa M F, Lorenzini P, Fortuna S, Calamandrei G. Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci, 2006, 93(1): 105–113

    Article  PubMed  CAS  Google Scholar 

  58. Timofeeva O A, Roegge C S, Seidler F J, Slotkin T A, Levin E D. Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon. Neurotoxicol Teratol, 2008, 30(1): 38–45

    Article  PubMed  CAS  Google Scholar 

  59. Shafer T J, Meyer D A, Crofton K M. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect, 2005, 113(2): 123–136

    PubMed  CAS  Google Scholar 

  60. Slotkin T A, Bodwell B E, Levin E D, Seidler F J. Neonatal exposure to low doses of diazinon: long-term effects on neural cell development and acetylcholine systems. Environ Health Perspect, 2008, 116(3): 340–348

    Article  PubMed  CAS  Google Scholar 

  61. Timofeeva O A, Gordon C J. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine. Brain Res, 2001, 893(1–2): 165–177

    Article  PubMed  CAS  Google Scholar 

  62. Lengyel Z, Fazakas Z, Nagymajtenyi L. Changes in the central nervous activity of rats treated with dimethoate in combination with other neurotoxicants in different phases of ontogenesis. Arh Hig Rada Toksikol, 2005, 56(3): 257–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Tian or Xiaoming Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Tian, Y. & Shen, X. Current techniques for assessing developmental neurotoxicity of pesticides. Front. Med. China 2, 337–343 (2008). https://doi.org/10.1007/s11684-008-0064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0064-4

Keywords

Navigation