Skip to main content
Log in

Using RAPD in Neisseria gonorrhoeae genotyping and transmission detection

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop an applicable Random Amplified Polymorphic DNAs (RAPD) method for genotyping Neisseria gonorrhoeae strain, and discuss the possibility of using the RAPD method to trace N. gonorrhoeae strain transmission route. Four different pretreatment methods were used on the N. gonorrhoeae genomic DNA component, and the best adaptive extract method was selected for RAPD. Different RAPD primers sequence was used for amplification and their differentiating capabilities for N. gonorrhoeae strains were compared. Applicable RAPD primer was selected for N. gonorrhoeae genotyping and then applied into transmission detection. The results show that the so called cetyl-trimethylammonium bromide (CTAB) method for extracting genomic DNA could give integrated genomic DNA and give out relatively better RAPD fingerprint maps, subsequently, using selected RAPD primer could give out a group of amplification polymerase chain reaction bands. The fingerprint maps from different N. gonorrhoeae strains were distinctive. Some main segments were common to all the N. gonorrhoeae strains tested. Some segments were different among the N. gonorrhoeae strains. According to the fingerprint maps and similarity index of different N. gonorrhoeae isolates, isolates from a pair of sex-partners were very similar. Based on these findings, the best extracting method and suitable RAPD primer were chosen. The RAPD fingerprint maps could type N. gonorrhoeae effectively and could be used as an additional approach in molecular epidemiology for tracing infection sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18(22): 6531–6535

    Article  PubMed  CAS  Google Scholar 

  2. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18(24): 7213–7218

    Article  PubMed  CAS  Google Scholar 

  3. Akopyanz N, Bukanov N O, Westblom T U, Kresovich S, Berg D E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD finger-printing. Nucleic Acids Res, 1992, 20(19): 5137–5142

    Article  PubMed  CAS  Google Scholar 

  4. Sandstrom E G, Chen K C, Buchanan T M. Serology of Neisseria gonorrhoeae: coagglutination serogroups WI and WII/III correspond to different outer membrane protein I molecules. Infect Immun, 1982, 38(2): 462–470

    PubMed  CAS  Google Scholar 

  5. Thyaer J D, Martin J E Jr. Improved selective medium for cultivation of N. gonorrhoeae and N. meningitidis. Public Health Rep, 1966, 81(6): 559–562

    Google Scholar 

  6. Fred M A, Roger B, Robert E K, David D M, Seidman J G, Smith J A, Kevin S. Short protocols in molecular biology 3rd ed. New York: John Wiley & Sons, Inc. 1995, 2–11

    Google Scholar 

  7. Chalkley L J, Janse van Rensburg M N, Matthee P C, Ison C A, Botha P L. Plasmid analysis of Neisseria gonorrhoeae isolates and dissemination of tetM genes in southern Africa 1993–1995. J Antimicrob Chemother, 1997, 40(6): 817–822

    Article  PubMed  CAS  Google Scholar 

  8. Todd K, Durrheim D, Pickles R, Eastwood K, Merritt T, Tapsall J, Ray S, Limnios A. Using epidemiological and molecular methods to investigate an outbreak of gonorrhoea associated with heterosexual contact in Newcastle, NSW, Australia. Sex Health, 2007, 4(4): 233–236

    Article  PubMed  Google Scholar 

  9. Bilek N, Martin I M, Bell G, Kinghorn G R, Ison C A, Spratt BG. Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts. J Clin Microbiol, 2007, 45(11): 3564–3567

    Article  PubMed  Google Scholar 

  10. Moodley P, Martin I M, Ison C A, Sturm A W. Typing of Neisseria gonorrhoeae reveals rapid reinfection in rural South Africa. J Clin Microbiol, 2002, 40(12): 4567–4570

    Article  PubMed  Google Scholar 

  11. Spaargaren J, Stoof J, Fennema H, Coutinho R, Savelkoul P. Amplified fragment length polymorphism fingerprinting for identification of a core group of Neisseria gonorrhoeae transmitters in the population attending a clinic for treatment of sexually transmitted diseases in Amsterdam, The Netherlands. J Clin Microbiol, 2001, 39(6): 2335–2337

    Article  PubMed  CAS  Google Scholar 

  12. Ellsworth D L, Rittenhouse K D, Honeycutt R L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques, 1993, 14(2): 214–217

    PubMed  CAS  Google Scholar 

  13. Carlton J M, Howard J, Jense J B, Walliker D. A rapid technique for the detection of DNA polymorphisms in Plasmodium. Exp Parasitol, 1995, 80(1): 163–166

    Article  PubMed  CAS  Google Scholar 

  14. Howard J, Carlton J M, Walliker D, Jensen J B. Use of random amplified polymorphic DNA (RAPD) technique in inheritance studies of Plasmodium falciparum. J Parasitol, 1996, 82(6): 941–946

    Article  PubMed  CAS  Google Scholar 

  15. Hilton A C, Mortiboy D, Banks J G, Penn C W. RAPD analysis of environmental, food and clinical isolates of Campylobacter spp. FEMS Immunol Med Microbiol, 1997, 18(2): 119–124

    Article  PubMed  CAS  Google Scholar 

  16. Camarena J J, Nogueira J M, Dasi M A, Moreno F, Garcia R, Ledesma E, Llorca J, Hernandez J. DNA amplification fingerprinting for subtyping Neisseria gonorrhoeae strains. Sex Transm Dis, 1995, 22(2): 128–136

    Article  PubMed  CAS  Google Scholar 

  17. Zhu X, Kong F, Zhang G, Chen S. Identification and classification of Neisseria gonorrhoeae by RAPD fingerprinting. Chin Med J (Engl), 1995, 108(4): 269–272

    CAS  Google Scholar 

  18. Dassanayake R S, Samaranayake L P. Amplification-based nucleic acid scanning techniques to assess genetic polymorphism in Candida. Crit Rev Microbiol, 2003, 29(1): 1–24

    Article  PubMed  CAS  Google Scholar 

  19. Eisen D, Russell E G, Tymms M, Roper E J, Grayson M L, Turnidge J. Random amplified polymorphic DNA and plasmid analyses used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. J Clin Microbiol, 1995, 33(3): 713–717

    PubMed  CAS  Google Scholar 

  20. Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A, Fendri C, Belhadj O, Ben-Mahrez K. Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol, 2003, 52(Pt 5): 427–433

    Article  PubMed  CAS  Google Scholar 

  21. Scott M P, Haymes K M, Williams S M. Parentage analysis using RAPD-PCR. Nucleic Acids Res, 1992, 20(20): 5493

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Zhou, X., Zhang, T. et al. Using RAPD in Neisseria gonorrhoeae genotyping and transmission detection. Front. Med. China 2, 269–275 (2008). https://doi.org/10.1007/s11684-008-0051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0051-9

Keywords

Navigation