Skip to main content
Log in

Spontaneous firing properties of rat medial vestibular nucleus neurons in brain slices by infrared visual patch clamp technique

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Domestic application of infrared patch clamp techniques on brain slices is limited. The key of the technique is to prepare high-quality brain slices. The present paper describes the preparation procedure of brainstem slices and the spontaneous firing properties of rat medial vestibular nucleus (MVN) neurons. By infrared differential interference contrast technique, neurons of rat MVN were visualized directly at the depth of 50–100 μm underneath the surface of slices. Firing activities of MVN neurons were recorded by the whole-cell patch clamp technique in artificial cerebrospinal fluid (ACSF) and low Ca2+-high Mg2+ fluid. The firing mode was more irregular and depressive in low Ca2+-high Mg2+ fluid than in ACSF. According to the averaged waveform of action potentials, cells were classified as the neurons with monophasic after-hyperpolarization potential (AHP), and the neurons with biphasic AHP. The resting membrane potential (RMP), input resistance (Rin) and membrane capacitance (Cm) of neurons were recorded and compared between groups. With infrared videomicroscopy, patch clamp recordings could be made under direct observation in freshly prepared brainstem slices. The discharge activities of MVN neurons were spontaneous and the firing mode was modulated by extracellular calcium concentration. The basic membrane properties of two types of neurons were not significantly different, while the differences in waveform might play a role in the segregation between tonic and kinetic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lisberger S G, Pavelko T A. Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science, 1988, 242(4879): 771–773

    Article  PubMed  CAS  Google Scholar 

  2. Newlands S D, Kevetter G A, Perachio A A. A quantitative study of the vestibular commissures in the gerbil. Brain Res, 1989, 487(1): 152–157

    Article  PubMed  CAS  Google Scholar 

  3. Broussard D M, Lisberger S G. Vestibular inputs to brain stem neurons that participate in motor learning in the primate vestibuloocular reflex. J Neurophysiol, 1992, 68(5): 1906–1909

    PubMed  CAS  Google Scholar 

  4. Sekirnjak C, du Lac S. Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol, 2006, 95(5): 3012–3023

    Article  PubMed  Google Scholar 

  5. Beraneck M, Cullen K E. Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse. J Neurophysiol, 2007, 98(3): 1549–1565

    Article  PubMed  CAS  Google Scholar 

  6. Stuart G J, Dodt H U, Sakmann B. Patch-clamp recordings from the some and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch, 1993, 423(5–6): 511–518

    Article  PubMed  CAS  Google Scholar 

  7. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. Harcourt Brace Jovanovich: Academic Press; 1986. p61–71

    Google Scholar 

  8. Edmonds B, Klein M, Dale N, Kandel E R. Contributions of two types of calcium channels to synaptic transmission and plasticity. Science, 1990, 250(4984): 1142–1147

    Article  PubMed  CAS  Google Scholar 

  9. Feig S, Lipton P. N-methyl-d-aspartate receptor activation and Ca2+ account for poor pyramidal cell structure in hippocampal slices. J Neurochemi, 1990, 55(2): 473–483

    Article  CAS  Google Scholar 

  10. Cousin M A. Synaptic vesicle endocytosis: calcium works overtimes in the nerve terminal. Mol Neurobiol, 2000, 22(1–3): 115–128

    Article  PubMed  CAS  Google Scholar 

  11. Dodt H U, Hager G, Zieglgansberger W. Direct observation of neurotoxicity in brain slices with infrared videomicroscopy. J Neurosci Meth, 1993, 50(2): 165–171

    Article  CAS  Google Scholar 

  12. Huang W, Huang H P, Mu Y, Zhang L, Jin M, Lv J, Gu J L, Xiu Y, Zhang B, Guo N, Liu T, Sun L, Song M Y, Zhang C X, Ruan H Z, Zhou Z. Real-time measurement of noradrenaline release in central nervous system. Sheng Li Xue Bao, 2007, 59(6): 865–870 (in Chinese)

    PubMed  CAS  Google Scholar 

  13. Sajikumar S, Navakkode S, Frey J U. Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr Opin Neurobiol, 2005, 15(5): 607–613

    Article  PubMed  CAS  Google Scholar 

  14. Lin Y, Carpenter D O. Medial vestibular neurons are endogenous pacemakers whose discharge is modulated by neuro-transmitters. Cell Mol Neurobiol, 1993, 13(6): 601–613

    Article  PubMed  CAS  Google Scholar 

  15. Hausser M, Raman I M, Otis T, Smith S L, Nelson A, du Lac S, Loewenstein Y, Mahon S, Pennartz C, Cohen I, Yarom Y. The beat goes on: Spontaneous firing in mammalian neuronal microcircuits. J Neurosci, 2004, 24(42): 9215–9219

    Article  PubMed  CAS  Google Scholar 

  16. Takazawa T, Saito Y, Tsuzuki K, Ozawa S. Membrane and firing properties of glutamatergic and GABAergic neurons in the rat medial vestibular nucleus. J Neurophysiol, 2004, 92: 3106–3120

    Article  PubMed  CAS  Google Scholar 

  17. Camp A J, Callister R J, Brichta A M. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. J Neurophysiol, 2006, 95(5): 3208–3218

    Article  PubMed  CAS  Google Scholar 

  18. de Waele C, Serafin M, Khateb A, Yabe T, Vidal P P, Mühlethaler M. Medial vestibular nucleus in the guinea-pig: Apamin-induced rhythmic burst firing—an in vitro and in vivo study. Exp Brain Res, 1993, 95(2): 213–222

    Article  PubMed  Google Scholar 

  19. Serafin M, Khateb A, de Waele C, Vidal P P, Mühlethaler M. Low threshold calcium spikes in medial vestibular nuclei neurons in vitro: A role in the generation of the vestibular nystagmus quick phase in vivo? Exp Brain Res, 1990, 82(1): 187–190

    Article  PubMed  CAS  Google Scholar 

  20. Straka H, Vibert N, Vidal P P, Moore L E, Dutia M B. Intrinsic membrane properties of vertebrate vestibular neurons: Function, development and plasticity. Prog Neurobiol, 2005, 76(6): 349–392

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg J M, Highstein S M, Moschovakis A K, Fernandez C. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in the vestibular nuclei of the squirrel monkey. I. An electrophysiological analysis. J Neurophysiol, 1987, 58(4): 700–718

    PubMed  CAS  Google Scholar 

  22. Gallagher J P, Lewis M R, Gallagher P S. An electrophysiological investigation of the rat medial vestibular nucleus in vitro. Prog Clin Biol Res, 1985, 176: 293–304

    PubMed  CAS  Google Scholar 

  23. Serafin M, de Waele C, Khateb A, Vidal P P, Mühlethaler M. Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res, 1991, 84(2): 417–425

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Kong, W., Zhu, Y. et al. Spontaneous firing properties of rat medial vestibular nucleus neurons in brain slices by infrared visual patch clamp technique. Front. Med. China 2, 264–268 (2008). https://doi.org/10.1007/s11684-008-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0050-x

Keywords

Navigation