Skip to main content
Log in

Mechanism of hepatocellular damage in rat caused by low serum selenium

  • Research Article
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the mechanism of hepatocellular damage in rats caused by low serum selenium. Thirty six rats were randomly divided into 2 groups: group A (fed with low-selenium diet from the Keshan Disease area with the content of selenium being 0.017 mg/kg); group B [fed with selenium-supplemented diet and 0.3 mg/L selenium (Na2SeO3) was added to the drinking water]. Both were respectively fed for 12 weeks. At the end of the 12th week, the levels of serum selenium, glutathione peroxidase (GPX) and malondialdehyde (MDA) in hepatic tissue were measured; the hepatocellular ultrastructure and apoptosis were observed as well. The levels of serum selenium and GPX in group A were markedly lower than those in group B. MDA level in group A was significantly higher than that in group B. Under the electron microscope (EM), the mitochondria were remarkably changed in group A. The rate of liver cell apoptosis appeared much higher in group A as well. It indicated that the damage caused by selenium deficiency was through the process of oxidation. Selenium deficiency led to apoptosis of hepatocytes where oxidative damage to mitochondria might be the cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jabłońska-Kaszewska I, Swiatkowska-Stodulska R, Łukasiak J, Dejneka W, Dorosz A, Dabrowska E, Falkiewicz B. Serum selenium levels in alcoholic liver disease. Med Sci Monit, 2003, 9(Suppl 3): 15–18

    PubMed  Google Scholar 

  2. Liu S Y, Li T Y, Zhao Z, Man R Y, Wang F. Effects of selenium and alpha-tocopherol on liver damage induced by feeding grains from an endemic area of Keshan disease in rats. Mol Cell Biochem, 1994, 132(2): 109–115

    Article  PubMed  CAS  Google Scholar 

  3. Thuluvath P J, Triger D R. Selenium in chronic liver disease. J Hepatol, 1992, 14(2–3): 176–182

    Article  PubMed  CAS  Google Scholar 

  4. Jüngst C, Cheng B, Gehrke R, Schmitz V, Nischalke H D, Ramakers J, Schramel P, Schirmacher P, Sauerbruch T, Caselmann W H. Oxidative damage is increased in human liver tissue adjacent to hepatocellular carcinoma. Hepatology, 2004, 39(6): 1663–1672

    Article  PubMed  Google Scholar 

  5. Mandal A K, Sinha J, Mandal S, Mukhopadhyay S, Das N. Targeting of liposomal flavonoid to liver in combating hepatocellular oxidative damage. Drug Deliv, 2002, 9(3): 181–185

    Article  PubMed  CAS  Google Scholar 

  6. Jeyabal P V, Syed M B, Venkataraman M, Sambandham J K, Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog, 2005, 44(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  7. Jozanov-Stankov O, Demajo M, Djujić I, Mandić M. Selenium intake as a modulator of responsiveness to oxidative stress. J Environ Pathol Toxicol Oncol, 1998, 17(3–4): 251–257

    PubMed  CAS  Google Scholar 

  8. Doyen P, Bigot A, Vasseur P, Rodius F. Molecular cloning and expression study of pi-class glutathione S-transferase (pi-GST) and selenium-dependent glutathione peroxidase (Se-GPx) transcripts in the freshwater bivalve Dreissena polymorpha. Comp Biochem Physiol C Toxicol Pharmacol, 2008, 147(1): 69–77

    Article  PubMed  Google Scholar 

  9. Baliga M S, Wang H, Zhuo P, Schwartz J L, Diamond A M. Selenium and GPx-1 overexpression protect mammalian cells against UV-induced DNA damage. Biol Trace Elem Res, 2007, 115(3): 227–242

    Article  PubMed  CAS  Google Scholar 

  10. Turturro F, Friday E, Welbourne T. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer, 2007, 7: 96

    Article  PubMed  Google Scholar 

  11. Lin C H, Lin P H. Induction of ROS formation, poly(ADP-ribose) polymerase-1 activation, and cell death by PCB126 and PCB153 in human T47D and MDA-MB-231 breast cancer cells. Chem Biol Interact, 2006, 162(2): 181–194

    Article  PubMed  CAS  Google Scholar 

  12. Gawel S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek, 2004, 57(9–10): 453–455

    PubMed  Google Scholar 

  13. Newmeyer D D, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell, 2003, 112(4): 481–490

    Article  PubMed  CAS  Google Scholar 

  14. Indo H P, Davidson M, Yen H C, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima H J. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion, 2007, 7(1–2): 106–118

    Article  PubMed  CAS  Google Scholar 

  15. Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol, 2007, 17(9): 422–427

    Article  PubMed  CAS  Google Scholar 

  16. Linford N J, Schriner S E, Rabinovitch P S. Oxidative damage and aging: spotlight on mitochondria. Cancer Res, 2006, 66(5): 2497–2499

    Article  PubMed  CAS  Google Scholar 

  17. Pessayre D, Mansouri A, Haouzi D, Fromenty B. Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol, 1999, 15(6): 367–373

    Article  PubMed  CAS  Google Scholar 

  18. Yang J C, Cortopassi G A. Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med, 1998, 24(4): 624–631

    Article  PubMed  CAS  Google Scholar 

  19. Reid A B, Kurten R C, McCullough S S, Brock R W, Hinson J A. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther, 2005, 312(2): 509–516

    Article  PubMed  CAS  Google Scholar 

  20. Kowaltowski A J, Castilho R F, Vercesi A E. Mitochondrial permeability transition and oxidative stress. FEBS Lett, 2001, 495(1–2): 12–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Qu, B., Liu, C. et al. Mechanism of hepatocellular damage in rat caused by low serum selenium. Front. Med. China 2, 255–258 (2008). https://doi.org/10.1007/s11684-008-0048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0048-4

Keywords

Navigation