Skip to main content
Log in

Current progress on scaffolds of tissue engineering heart valves

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Tissue engineering heart valves (TEHV) may be the most promising valve substitute, but the study has been relatively stagnant in the recent five years due to the special position, function and mechanical property of heart valves. It is one of the key factors to select an ideal scaffold material in the construction of TEHV. And this article will briefly review the current research and progress on the scaffolds of TEHV, especially based on Chinese works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shinoka T, Breuer C K, Tanel R E, Zund G, Miura T, Ma P X, Langer R, Vacanti J P, Mayer J E Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg, 1995, 60(6 Suppl): S513–S516

    Article  PubMed  CAS  Google Scholar 

  2. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss R R, Pethig K, Haverich A, Bader A. Tissue engineering of pulmonary heart valves on allogenic acellular matrix condutis: in vivo restoration of valve tissue. Circulation, 2000, 102(19 Suppl 3): III50–III55

    PubMed  CAS  Google Scholar 

  3. Hoerstrup S P, Sodian R, Daebritz S, Wang J, Bacha E A, Martin D P, Moran A M, Guleserian K J, Sperling J S, Kaushal S, Vacanti J P, Schoen F J, Mayer J E Jr. Functional living trileaflet heart valves grown in vitro. Circulation, 2000, 102(19 Suppl 3): III44–III49

    PubMed  CAS  Google Scholar 

  4. O’Brien M F, Goldstein S, Walsh S, Black K S, Elkins R, Clarke D. The SynerGraft valve: a new acellular (nonglutar-aldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg, 1999, 11(4 Suppl 1): 194–200

    PubMed  CAS  Google Scholar 

  5. Simon P, Kasimir M T, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E. Early failure of the tissue engineered porcine heart valve Synergraft in pediatric patients. Eur J Cardiothorac Surg, 2003, 23(6): 1002–1006

    Article  PubMed  CAS  Google Scholar 

  6. Hu P. Surgical implants for tissue engineering and the processing, modification and application of biomaterials. Zhongguo Yiliao Qixie Zazhi, 2006, 12(7): 13–21 (in Chinese)

    Google Scholar 

  7. Song Q, Shi J W, Dong N G, Sun Z Q. The progress on tissue engineering heart valves. Zhonghua Shiyan Waike Zazhi, 2003, 20(4): 381–383 (in Chinese)

    Google Scholar 

  8. Flanagan T C, Pandit A. Living artificial heart valve alternatives. Eur Cell Mater, 2003, 6(1): 28–45

    PubMed  CAS  Google Scholar 

  9. Dong N G, Sun Z Q, Shi J W, Zund G. Experimental construction of tissue engineering heart valves. Zhonghua Shiyan Waike Zazhi, 2002, 19(1): 88–90 (in Chinese).

    Google Scholar 

  10. Boontheekul T, Mooney D J. Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol, 2003, 14(5): 559–565

    Article  PubMed  CAS  Google Scholar 

  11. Dong N G, Ye X F, Shi J W, Song Q, Sun Z Q. Comparison on decellularizing approaches of biological scaffold with porcine aortic valve for tissue engineering heart valve. Zhonghua Shiyan Waike Zazhi, 2005, 22(3): 377 (in Chinese)

    Google Scholar 

  12. Erdbrügger W, Konertz W, Dohmen P M, Posner S, Ellerbrok H, Brodde O E, Robenek H, Modersohn D, Pruss A, Holinski S, Stein-Konertz M, Pauli G. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng, 2006, 12(8): 2059–2068

    Article  PubMed  Google Scholar 

  13. Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials, 2006, 27(23): 4221–4229

    Article  PubMed  CAS  Google Scholar 

  14. Kasimir M T, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis, 2006, 15(2): 278–286

    PubMed  Google Scholar 

  15. Rieder E, Kasimir M T, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg, 2004, 127(2): 399–405

    Article  PubMed  Google Scholar 

  16. Shi J W, Dong N G. Application of RGD peptides in the field of tissue engineering. Zhonghua Shiyan Waike Zazhi, 2005, 22(9): 1150–1152 (in Chinese)

    Google Scholar 

  17. Bayless K J, Salazar R, Davis G E. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha (v) beta (3) and alpha(5)beta(1) integrins. Am J Pathol, 2000, 156(5): 1673–1683

    PubMed  CAS  Google Scholar 

  18. Stamm C, Khosravi A, Grabow N, Schmohl K, Treckmann N, Drechsel A, Nan M, Schmitz K P, Haubold A, Steinhoff G. Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg, 2004, 78(6): 2084–2092

    Article  PubMed  Google Scholar 

  19. Stock U A, Vacanti J P, Mayer Jr J E, Wahlers T. Tissue engineering of heart valves — current aspects. Thorac Cardiovasc Surg, 2002, 50(3): 184–193

    Article  PubMed  CAS  Google Scholar 

  20. Schenke-Layland K, Riemann I, Opitz F, König K, Halbhuber K J, Stock U A. comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol, 2004, 23(2): 113–125

    Article  PubMed  CAS  Google Scholar 

  21. Shangguan Y Y, Wang Y W, Wu Q, Chen G Q. The mechanical properties and in vitro biodegradation and biocompatibility of UV-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials, 2006, 27(11): 2349–2357

    Article  PubMed  CAS  Google Scholar 

  22. Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol, 2005, 23(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  23. Lutolf M P, Weber F E, Schmoekel H G, Schense J C, Kohler T, Müller R, Hubbell J A. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol, 2003, 21(5): 513–518

    Article  PubMed  CAS  Google Scholar 

  24. Lutolf M P, Lauer-Fields J L, Schmoekel H G, Metters A T, Weber F E, Fields G B, Hubbell J A. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA, 2003, 100(9): 5413–5418

    Article  PubMed  CAS  Google Scholar 

  25. Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell J A. Biologically engineered protein-graft-poly (ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules, 2002, 3(4): 710–723

    Article  PubMed  CAS  Google Scholar 

  26. Qi H X, Hu P, Xu J, Wang A J. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules, 2006, 7(8): 2327–2330

    Article  PubMed  CAS  Google Scholar 

  27. Yoon K, Kim K, Wang X F, Fang D F, Hsiao B S, Chu B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 2006, 47(8): 2434–2441

    Article  CAS  Google Scholar 

  28. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003, 24(24): 4385–4415

    Article  PubMed  CAS  Google Scholar 

  29. Myles J L, Burgess B T, Dickinson R B. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. J Biomater Sci Polym Ed, 2000, 11(1): 69–86

    Article  PubMed  CAS  Google Scholar 

  30. Yang D Z, Hao J. Surface modification of biomaterials with poplypeptides. Guowai Yixue Shengwu Yixue Gongcheng Fence, 2004, 27(2): 65–68 (in Chinese)

    Google Scholar 

  31. Shi J W, Dong N G, Sun Z Q. Immobilization of RGD peptides onto decellularized valve scaffolds to promote cell adhesion. J Wuhan Univ Technol Mater Sci Ed, 2007, 22(4): 686–690

    Article  CAS  Google Scholar 

  32. Shi J W, Dong N G, Sun Z Q, Qiu Y M. The role of RGD peptides and transforming growth factor-β1 in TEHV construction. Zhonghua Yi Xue Za Zhi, 2006, 86(29): 2074–2077 (in Chinese)

    CAS  Google Scholar 

  33. Dong N G, Qiu Y M, Shi J W. Applications of transforming growth factor — betal on construction of tissue engineering heart valves in vitro. Zhonghua Yi Xue Za Zhi, 2007, 87(23): 1622–1626 (in Chinese)

    PubMed  CAS  Google Scholar 

  34. Hong H, Dong N G, Shi J W. Amplex Red fluorometric assay for detection of lysyl oxidase in tissue engineered heart valve. Zhongguo Xiong Xin Xueguan Linchuang Zazhi, 2007, 14(1): 27–30 (in Chinese)

    Google Scholar 

  35. Dong N G, Ye X F, Sun Z Q, Shi J W, Qiu Y M, Chen J J. Experimental study on mechanical properties of decellularized porcine aortic valve and effects of precoating methods of biological scaffold on histocompatibility. Zhonghua Wai Ke Za Zhi, 2007, 45(16): 1128–1131 (in Chinese)

    PubMed  Google Scholar 

  36. Mott J D, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol, 2004, 16(5): 558–564

    Article  PubMed  CAS  Google Scholar 

  37. Shinoka T. Tissue engineered heart valves: autologous cell seeding on bio-degradable polymer scaffold. Artif Organs, 2002, 26(5): 402–406

    Article  PubMed  Google Scholar 

  38. Engelmayr G C Jr, Rabkin E, Sutherland F W, Schoen F J, Mayer J E Jr, Sacks M S. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials, 2005, 26(2): 175–187

    Article  PubMed  CAS  Google Scholar 

  39. Sodian R, Hoerstrup S P, Sperling J S, Daebritz S, Martin D P, Moran A M, Kim B S, Schoen F J, Vacanti J P, Mayer J E Jr. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 2000, 102(19 Suppl 3): III22–III29

    PubMed  CAS  Google Scholar 

  40. Davis M E, Hsieh P C, Grodzinsky A J, Lee R T. Custom design of the cardiac microenvironment with biomaterials. Circ Res, 2005, 97(1): 8–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Shi.

Additional information

__________

Translated from Chinese Journal of Experimental Surgery, 2007, 24(3): 261–263 [译自: 中华实验外科杂志]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, N., Shi, J., Hu, P. et al. Current progress on scaffolds of tissue engineering heart valves. Front. Med. China 2, 229–234 (2008). https://doi.org/10.1007/s11684-008-0043-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0043-9

Keywords

Navigation