Skip to main content
Log in

Wnt/β-catenin signaling pathway and its role in hepatocellular carcinoma

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Wnt/β-catenin signaling pathway has been identified as a key cellular pathway in embryogenesis and disease, including cancers. In recent years, more and more interacting components have been observed and their exact functions approached, thus ensuring the most complicated understanding of this pathway in normal organism development and disorders. In hepatocellular carcinoma (HCC), with a deeply understanding of this pathway, more and more genes which contribute to aberrant activation of Wnt/β-catenin signaling pathway has recently been identified and their exact roles in HCC pursued. In this review, we will focus on a mostly updated understanding of this pathway and its observed role in HCC by emphasizing the gene defects identified to promote tumorigenesis and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de La Coste A, Romagnolo B, Billuart P, Renard C A, Buendia M A, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the b-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA, 1998, 95(15): 8847–8851

    Article  Google Scholar 

  2. Cui J, Zhou X D, Liu Y K, Tang Z Y, Zile M H. Abnormal β-catenin gene expression with invasiveness of primary hepatocellular carcinoma in China. World J Gastroenterol, 2001, 7(4): 542–546

    PubMed  CAS  Google Scholar 

  3. Arias A M. Epithelial mesenchymal interactions in cancer and development. Cell, 2001, 105(4): 425–431

    Article  PubMed  CAS  Google Scholar 

  4. Moon R T, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science, 2002, 296(5573): 1644–1646

    Article  PubMed  CAS  Google Scholar 

  5. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science, 2000, 287(5458): 1606–1609

    Article  PubMed  CAS  Google Scholar 

  6. Weeraratna A T, Jiang Y, Hostetter G. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 2002, 1(3): 279–288

    Article  PubMed  CAS  Google Scholar 

  7. Rhee C S, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson D A. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene, 2002, 21(43): 6598–6605

    Article  PubMed  CAS  Google Scholar 

  8. Barker N, Morin P J, Clevers H. The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res, 2000, 77: 1–24

    Article  PubMed  CAS  Google Scholar 

  9. Cong F, Schweizer L, Varmus H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development, 2004, 131(20): 5103–5115

    Article  PubMed  CAS  Google Scholar 

  10. Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004, 20: 781–810

    Article  PubMed  CAS  Google Scholar 

  11. Wong H C, Bourdelas A, Krauss A, Lee H J, Shao Y, Wu D, Mlodzik M, Shi D L, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell, 2003, 12(5): 1251–1260

    Article  PubMed  CAS  Google Scholar 

  12. Wu C H, Nusse R. Ligand receptor interactions in the Wnt signaling pathway in Drosophila. J Biol Chem, 2002, 277(44): 41762–41769

    Article  PubMed  CAS  Google Scholar 

  13. Chen C M, Strapps W, Tomlinson A, Struhl G. Evidence that the cysteine-rich domain of Drosophila Frizzled family receptors is dispensable for transducing Wingless. Proc Natl Acad Sci USA, 2004, 101(45): 15961–15966

    Article  PubMed  CAS  Google Scholar 

  14. Povelones M, Nusse R. The role of the cysteine-rich domain of Frizzled in Wingless-Armadillo signaling. EMBO J, 2005, 24(19): 3493–3503

    Article  PubMed  CAS  Google Scholar 

  15. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet J P, He X. LDL-receptor-related proteins in Wnt signal transduction. Nature, 2000, 407(6803): 530–535

    Article  PubMed  CAS  Google Scholar 

  16. Wehrli M, Dougan S T, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S. Arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature, 2000, 407(6803): 527–530

    Article  PubMed  CAS  Google Scholar 

  17. Liu G, Bafico A, Harris V K, Aaronson S A. A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol, 2003, 23(16): 5825–5835

    Article  PubMed  CAS  Google Scholar 

  18. Holmen S L, Robertson S A, Zylstra C R, Williams B O. Wnt-independent activation of beta-catenin mediated by a Dkk1-Fz5 fusion protein. Biochem Biophys Res Commun, 2005, 328(2): 533–539

    Article  PubMed  CAS  Google Scholar 

  19. Baig-Lewis S, Peterson-Nedry W, Wehrli M. Wingless/Wnt signal transduction requires distinct initiation and amplification steps that both depend on Arrow/LRP. Dev Biol, 2007, 306(1): 94–111

    Article  PubMed  CAS  Google Scholar 

  20. Xu Q, Wang Y, Dabdoub A, Smallwood P M, Williams J, Woods C, Kelley M W, Jiang L, Tasman W, Zhang K, Nathans J. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell, 2004, 116(6): 883–895

    Article  PubMed  CAS  Google Scholar 

  21. Kim K A, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk W D, Tomizuka K. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 2005, 309(5738): 1256–1259

    Article  PubMed  CAS  Google Scholar 

  22. Nam J S, Turcotte T J, Smith P F, Choi S, Yoon J K. Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin-dependent gene expression. J Biol Chem, 2006, 281(19): 13247–13257

    Article  PubMed  CAS  Google Scholar 

  23. Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway. J Cell Sci, 2003, 116(13): 2627–2634

    Article  PubMed  CAS  Google Scholar 

  24. Semënov M V, Tamai K, Brott B K, Kühl M, Sokol S, He X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol, 2001, 11(12): 951–961

    Article  PubMed  Google Scholar 

  25. Mao B, Wu W, Davidson G. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature, 2002, 417(6889): 664–667

    Article  PubMed  CAS  Google Scholar 

  26. Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem, 2005, 280(29): 26770–26775

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Zhang Y, Kang H. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem, 2005, 280(20): 19883–19887

    Article  PubMed  CAS  Google Scholar 

  28. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe G C, Mundlos S, Shibuya H, Takada S, Minami Y. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells, 2003, 8(7): 645–654

    Article  PubMed  CAS  Google Scholar 

  29. Nishita M, Yoo S K, Nomachi A, Kani S, Sougawa N, Ohta Y, Takada S, Kikuchi A, Minami Y. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol, 2006, 175(4): 555–562

    Article  PubMed  CAS  Google Scholar 

  30. Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell, 2004, 119(1): 97–108

    Article  PubMed  CAS  Google Scholar 

  31. Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal, 2007, 19(4): 659–671

    Article  PubMed  CAS  Google Scholar 

  32. Hsieh J C, Kodjabachian L, Rebbert M L, Rattner A, Smallwood P M, Samos C H, Nusse R, Dawid I B, Nathans J. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature, 1999, 398(6726): 431–436

    Article  PubMed  CAS  Google Scholar 

  33. Amit S, Hatzubai A, Birman Y. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev, 2002, 16(9): 1066–1076

    Article  PubMed  CAS  Google Scholar 

  34. Behrens J, Jerchow B A, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 1998, 280(5363): 596–599

    Article  PubMed  CAS  Google Scholar 

  35. Liu C, Li Y, Semenov M. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 2002, 108(6): 837–847

    Article  PubMed  CAS  Google Scholar 

  36. Yanagawa S, Matsuda Y, Lee J S, Matsubayashi H, Sese S, Kadowaki T, Ishimoto A. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J, 2002, 21(7): 1733–1742

    Article  PubMed  CAS  Google Scholar 

  37. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 1997, 16(13): 3797–3804

    Article  PubMed  CAS  Google Scholar 

  38. Zeng X, Tamai K, Doble B, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 2005, 438(7069): 873–877

    Article  PubMed  CAS  Google Scholar 

  39. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C. Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature, 2005, 438(7069): 867–872

    Article  PubMed  CAS  Google Scholar 

  40. Brennan K, Gonzalez-Sancho J M, Castelo-Soccio L A, Howe L R, Brown A M. Truncated mutants of the putative Wnt receptor LRP6/Arrow can stabilize beta-catenin independently of Frizzled protein. Oncogene, 2004, 23(28): 4873–4884

    Article  PubMed  CAS  Google Scholar 

  41. Chen W, ten Berge D, Brown J, Ahn S, Hu L A, Miller W E, Caron M G, Barak L S, Nusse R, Lefkowitz R J. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science, 2003, 301(5638): 1391–1394

    Article  PubMed  CAS  Google Scholar 

  42. Klein T J, Jenny A, Djiane A, Mlodzik M. CKIɛ/discs overgrown Promotes Both Wnt-Fz/β-Catenin and Fz/PCP Signaling in Drosophila. Current Biology, 2006, 16(13): 1337–1343

    Article  PubMed  CAS  Google Scholar 

  43. Ding Y, Dale T. Wnt signal transduction: kinase cogs in a nano-machine? Trends Biochem Sci, 2002, 27(7): 327–329

    Article  PubMed  CAS  Google Scholar 

  44. Sun T Q, Lu B, Feng J J, Reinhard C, Jan Y N, Fantl W J, Williams L T. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signaling. Nat Cell Biol, 2001, 3(7): 628–636

    Article  PubMed  CAS  Google Scholar 

  45. Seldin D C, Landesman-Bollag E, Farago M, Currier N, Lou D, Dominguez I. CK2 as a positive regulator of Wnt signaling and tumourigenesis. Mol Cell Biochem, 2005, 274(1–2): 63–67

    Article  PubMed  CAS  Google Scholar 

  46. Li L, Yuan H, Weaver C D, Mao J, Farr G H 3rd, Sussman D J, Jonkers J, Kimelman D, Wu D. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J, 1999, 18(15): 4233–4240

    Article  PubMed  CAS  Google Scholar 

  47. Salic A, Lee E, Mayer L, Kirschner M W. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell, 2000, 5(3): 523–532

    Article  PubMed  CAS  Google Scholar 

  48. Ossipova O, Bardeesy N, DePinho R A, Green J B. B1 (XEEK1) regulates Wnt signalling in vertebrate Development. Nat Cell Biol, 2003, 5(10): 889–894

    Article  PubMed  CAS  Google Scholar 

  49. Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D. Regulation of the Wnt signalling component PAR1A by the Peutz—Jeghers syndrome kinase LKB1. Oncogene, 2003, 22(30): 4752–4756

    Article  PubMed  CAS  Google Scholar 

  50. Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol, 2003, 13(11): 960–966

    Article  PubMed  CAS  Google Scholar 

  51. Mao J, Wang J, Liu B, Pan W, Farr G H 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell, 2001, 7(4): 801–809

    Article  PubMed  CAS  Google Scholar 

  52. Brunner E, Peter O, Schweizer L, Basler K. Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature, 1997, 385(6619): 829–833

    Article  PubMed  CAS  Google Scholar 

  53. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell, 1997, 88(6): 789–799

    Article  PubMed  Google Scholar 

  54. Bienz M. TCF: transcriptional activator or repressor? Curr Opin Cell Biol, 1998, 10(3): 366–372

    Article  PubMed  CAS  Google Scholar 

  55. Cavallo R A, Cox R T, Moline M M, Roose J, Polevoy G A, Clevers H, Peifer M, Bejsovec A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature, 1998, 395(6702): 604–608

    Article  PubMed  CAS  Google Scholar 

  56. Chen G, Fernandez J, Mische S, Courey A J. A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev, 1999, 13(17): 2218–2230

    Article  PubMed  CAS  Google Scholar 

  57. Henderson B R, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep, 2002, 3(9): 834–839

    Article  PubMed  CAS  Google Scholar 

  58. Rosin-Arbesfeld R, Townsley F, Bienz M. APC has a nuclear export function. Nature, 2000, 406(6799): 1009–1012

    Article  PubMed  CAS  Google Scholar 

  59. Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J, 2003, 22(5): 1101–1113

    Article  PubMed  CAS  Google Scholar 

  60. Townsley F M, Cliffe A, Bienz M. Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol, 2004, 6(7): 626–633

    Article  PubMed  CAS  Google Scholar 

  61. Hoffmans R, Städeli R, Basler K. Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin. Curr Biol, 2005, 15(13): 1207–1211

    Article  PubMed  CAS  Google Scholar 

  62. Daniels D L, Weis W I. β-catenin directly displaces Groucho/TLE repressor from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol, 2005, 12(4): 364–371

    Article  PubMed  CAS  Google Scholar 

  63. Hecht A, Vleminckx K, Stemmler M P, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J, 2000, 19(8): 1839–1850

    Article  PubMed  CAS  Google Scholar 

  64. Takemaru K I, Moon R T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol, 2000, 149(2): 249–254

    Article  PubMed  CAS  Google Scholar 

  65. Li J, Sutter C, Parker D S, Blauwkamp T, Fang M, Cadigan K M. CBP/p300 are bimodal regulators of Wnt signaling. EMBO J, 2007, 26(9): 2284–2294

    Article  PubMed  CAS  Google Scholar 

  66. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H. The chromatin remodeling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J, 2001, 20(17): 4935–4943

    Article  PubMed  CAS  Google Scholar 

  67. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. A new nuclear component of the Wnt signalling pathway. Nat Cell Biol, 2002, 4(5): 367–373

    Article  PubMed  CAS  Google Scholar 

  68. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K. Wnt-wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 2002, 109(1): 47–60

    Article  PubMed  CAS  Google Scholar 

  69. Parker D S, Jemison J, Cadigan K M. Pygopus, a nuclear PHD-fingerprotein required for Wingless signaling in Drosophila. Development, 2002, 129(11): 2565–2576

    PubMed  CAS  Google Scholar 

  70. Mosimann C, Hausmann G, Basler K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell, 2006, 125(2): 327–341

    Article  PubMed  CAS  Google Scholar 

  71. Hoffmans R, Basler K. BCL9-2 binds Arm/beta-catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mech Dev, 2007, 124(1): 59–67

    Article  PubMed  CAS  Google Scholar 

  72. de la Roche M, Bienz M. Wingless-independent association of Pygopus with dTCF target genes. Curr Biol, 2007, 17(6): 556–561

    Article  PubMed  CAS  Google Scholar 

  73. Olson L E, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi K A, Wu W, Taketo M M, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld M G. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell, 2006, 125(3): 593–605

    Article  PubMed  CAS  Google Scholar 

  74. Kioussi C, Briata P, Baek S H, Rose D W, Hamblet N S, Herman T, Ohgi K A, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen H D, Kemler R, Glass C K, Wynshaw-Boris A, Rosenfeld M G. Identification of a Wnt/Dvl/beta-Catenin→Pitx2 pathway mediating cell-type-specific proliferation during development. Cell, 2002, 111(5): 673–685

    Article  PubMed  CAS  Google Scholar 

  75. Sinner D, Rankin S, Lee M, Zorn A M. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development, 2004, 131(13): 3069–3080

    Article  PubMed  CAS  Google Scholar 

  76. Ishitani T, Ninomiya-Tsuji J, Matsumoto K. Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol, 2003, 23(4): 1379–1389

    Article  PubMed  CAS  Google Scholar 

  77. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon R T, Ninomiya-Tsuji J. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol, 2003, 23(1): 131–139

    Article  PubMed  CAS  Google Scholar 

  78. Gottardi C J, Gumbiner B M. Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. Am J Physiol Cell Physiol, 2004, 286(4): C747–C756

    Article  PubMed  CAS  Google Scholar 

  79. Takemaru K, Yamaguchi S, Lee Y S, Zhang Y, Carthew R W, Moon R T. Chibby, a nuclear beta-catenin-associated antiagonist of the Wnt/Wingless pathway. Nature, 2003, 422(6934): 905–909

    Article  PubMed  CAS  Google Scholar 

  80. Bauer A, Chauvet S, Huber O, Usseglio F, Rothbächer U, Aragnol D, Kemler R, Pradel J. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signaling activity. EMBO J, 2000, 19(22): 6121–6130

    Article  PubMed  CAS  Google Scholar 

  81. Bauer A, Huber O, Kemler R. Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA, 1998, 95(25): 14787–14792

    Article  PubMed  CAS  Google Scholar 

  82. Waltzer L, Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signaling. Nature, 1998, 395(6701): 521–525

    Article  PubMed  CAS  Google Scholar 

  83. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology, 2001, 120(7): 1763–1773

    Article  PubMed  CAS  Google Scholar 

  84. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science, 2000, 287(5458): 1606–1609

    Article  PubMed  CAS  Google Scholar 

  85. Polakis P. Wnt signaling and cancer. Genes Dev, 2000, 14(15): 1837–1851

    PubMed  CAS  Google Scholar 

  86. Kondo Y, Kanai Y, Sakamoto M, Genda T, Mizokami M, Ueda R, Hirohashi S. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn J Cancer Res, 1999, 90(12): 1301–1309

    PubMed  CAS  Google Scholar 

  87. Legoix P, Bluteau O, Bayer J, Perret C, Balabaud C, Belghiti J, Franco D, Thomas G, Laurent-Puig P, Zucman-Rossi J. Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene, 1999, 18(27): 4044–4046

    Article  PubMed  CAS  Google Scholar 

  88. Nhieu J T, Renard C A, Wei Y, Cherqui D, Zafrani E S, Buendia M A. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol, 1999, 155(3): 703–710

    PubMed  CAS  Google Scholar 

  89. Wong C M, Fan S T, Ng I O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer, 2001, 92(1): 136–145

    Article  PubMed  CAS  Google Scholar 

  90. Cui J, Zhou X D, Liu Y K, Tang Z Y. Mutation and overexpression of β-catenin gene may play an important role in primary hepatocellular carcinoma among Chinese people. J Cancer Res Clin Oncol, 2001, 127(8): 577–581

    Article  PubMed  CAS  Google Scholar 

  91. Cui J, Zhou X D, Liu Y K, Tang Z, Romeih M. Wnt signaling in hepatocellular carcinoma: Analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. J Gastroenterol Hepatol, 2003, 18(3): 280–287

    Article  PubMed  CAS  Google Scholar 

  92. Huang H, Fujii H, Sankila A, Mahler-Araujo B M, Matsuda M, Cathomas G, Ohgaki H. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol, 1999, 155(6): 1795–1801

    PubMed  CAS  Google Scholar 

  93. Cui J, Zhou X, Liu Y, Tang Z, Romeih M. Alterations of beta-catenin and Tcf-4 instead of GSK-3beta contribute to activation of Wnt pathway in hepatocellular carcinoma. Chin Med J (Engl), 2003, 116(12): 1885–1892

    CAS  Google Scholar 

  94. Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y. Beta-Catenin Mutations Are Associated with a Subset of Low-Stage Hepatocellular Carcinoma Negative for Hepatitis B Virus and with Favorable Prognosis. Am J Pathol, 2000, 157(3): 763–770

    PubMed  CAS  Google Scholar 

  95. Tien L T, Ito M, Nakao M, Niino D, Serik M, Nakashima M, Wen C Y, Yatsuhashi H, Ishibashi H. Expression of β-catenin in hepatocellular carcinoma. World J Gastroenterol, 2005, 11(16): 2398–2401

    PubMed  CAS  Google Scholar 

  96. Devereux T R, Stern M C, Flake G P, Yu M C, Zhang Z Q, London S J, Taylor J A. CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog, 2001, 31(2): 68–73

    Article  PubMed  CAS  Google Scholar 

  97. Edamoto Y, Hara A, Biernat W, Terracciano L, Cathomas G, Riehle H M, Matsuda M, Fujii H, Scoazec J Y, Ohgaki H. Alterations of RB1, p53and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis. Int J Cancer, 2003, 106(3): 334–341

    Article  PubMed  CAS  Google Scholar 

  98. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene, 2006, 25(27): 3778–3786

    Article  PubMed  CAS  Google Scholar 

  99. Cha M Y, Kim C M, Park Y M, Ryu W S. Hepatitis B virus X protein is essential for the activation of Wnt/bcatenin signaling in hepatoma cells. Hepatology, 2004, 39(6): 1683–1693

    Article  PubMed  CAS  Google Scholar 

  100. Mao T L, Chu J S, Jeng Y M, Lai P L, Hsu H C. Expression of mutant nuclear beta-catenin correlates with noninvasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J Pathol, 2001, 193(1): 95–101

    Article  PubMed  CAS  Google Scholar 

  101. Schmitt-Graff A, Ertelt V, Allgaier H P, Koelble K, Olschewski M, Nitschke R, Bochaton-Piallat M L, Gabbiani G, Blum H E. Cellular retino-1-binding protein-1 in hepatocellular carcinoma correlates with beta-catenin, Ki-67 index, and patient survival. Hepatology, 2003, 38(2): 470–480

    Article  PubMed  CAS  Google Scholar 

  102. Kielhorn E, Provost E, Olsen D, D’Aquila T G, Smith B L, Camp R L, Rimm D L. Tissue microarray-based analysis shows phospho-beta-catenin expression in malignant melanoma is associated with poor outcome. Int J Cancer, 2003, 103(5): 652–656

    Article  PubMed  CAS  Google Scholar 

  103. Zeng G, Awan F, Otruba W, Muller P, Apte U, Tan X, Gandhi C, Demetris A J, Monga S P. Wnt’er in liver: expression of Wnt and Frizzled genes in mouse. Hepatology, 2007, 45(1): 195–2041

    Article  PubMed  CAS  Google Scholar 

  104. Calvisi D F, Conner E A, Ladu S, Lemmer E R, Factor V M, Thorgeirsson S S. Activation of the canonical Wnt/β-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J Hepatol, 2005, 42(6): 842–849

    Article  PubMed  CAS  Google Scholar 

  105. Merle P, de la Monte S, Kim M, Herrmann M, Tanaka S, Von Dem Bussche A. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology, 2004, 127(4): 1110–1122

    Article  PubMed  CAS  Google Scholar 

  106. Merle P, Kim M, Herrmann M, Gupte A, Lefrançois L, Califano S, Trépo C, Tanaka S, Vitvitski L, de la Monte S, Wands J R. Oncogenic role of the frizzled-7/b-catenin pathway in hepatocellular carcinoma. J Hepatol, 2005, 43(5): 854–862

    Article  PubMed  CAS  Google Scholar 

  107. Shih Y L, Shyu R Y, Hsieh B C, Lai H C, Liu K Y, Chu T Y, Lin Y W. Promoter methylation of the secreted Frizzled-related protein 1 gene SFRP1 is frequent in hepatocellular carcinoma. Cancer, 2006, 107(3): 579–590

    Article  PubMed  CAS  Google Scholar 

  108. Shih Y L, Hsieh B C, Lai H C, Yan M D, Hsieh T Y, Chao Y C, Lin Y W. SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer, 2007, 121(5): 1028–1035

    Article  PubMed  CAS  Google Scholar 

  109. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet, 2000, 24(3): 245–250

    Article  PubMed  CAS  Google Scholar 

  110. Taniguchi K, Roberts L R, Aderca I N, Dong X, Qian C, Murphy L M, Nagorney D M, Burgart L J, Roche P C, Smith D I, Ross J A, Liu W. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene, 2002, 21(31): 4863–4871

    Article  PubMed  CAS  Google Scholar 

  111. Zucman-Rossi J, Benhamouche S, Godard C, Boyault S, Grimber G, Balabaud C, Cunha A S, Bioulac-Sage P, Perret C. Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene, 2007, 26(5): 774–780

    Article  PubMed  CAS  Google Scholar 

  112. Ishizaki Y, Ikeda S, Fujimori M, Shimizu Y, Kurihara T, Itamoto T, Kikuchi A, Okajima M, Asahara T. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol, 2004, 24(5): 1077–1083

    PubMed  CAS  Google Scholar 

  113. Sparks A B, Morin P J, Vogelstein B, Kinzler K W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res, 1998, 58(6): 1130–1134

    PubMed  CAS  Google Scholar 

  114. Utherland C, Leighton I A, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: New kinase connections in insulin and growth-factor signaling. Biochem J, 1993, 296(Pt 1): 15–19

    Google Scholar 

  115. Ban K C, Singh H, Krishnan R, Seow H F. GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma. Cancer Lett, 2003, 199(2): 201–208

    Article  PubMed  CAS  Google Scholar 

  116. Chen T C, Hsieh L L, Ng K F, Jeng L B, Chen M F. Absence of APC gene mutation in the mutation cluster region in hepatocellular carcinoma. Cancer Lett, 1998, 134(1): 23–28

    Article  PubMed  CAS  Google Scholar 

  117. Katoh H, Shibata T, Kokubu A, Ojima H, Kosuge T, Kanai Y, Hirohashi S. Genetic inactivation of the APC gene contributes to the malignant progression of sporadic hepatocellular carcinoma: a case report. Genes Chromosomes Cancer, 2006, 45(11): 1050–1057

    Article  PubMed  CAS  Google Scholar 

  118. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A, 2004, 101(49): 17216–17221

    Article  PubMed  CAS  Google Scholar 

  119. Jiang Y, Zhou X D, Liu Y K, Wu X, Huang X W. Association of hTcf-4 gene expression and mutation with clinicopathological characteristics of hepatocellular carcinoma. World J Gastroenterol, 2002, 8(5): 804–807

    PubMed  CAS  Google Scholar 

  120. Cadoret A, Ovejero C, Saadi-Kheddouci S, Souil E, Fabre M, Romagnolo B, Kahn A, Perret C. Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res, 2001, 61(8): 3245–3249

    PubMed  CAS  Google Scholar 

  121. Prange W, Breuhahn K, Fischer F, Zilkens C, Pietsch T, Petmecky K, Eilers R, Dienes H P, Schirmacher P. Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J Pathol, 2003, 201(2): 250–259

    Article  PubMed  CAS  Google Scholar 

  122. Schmitt-Graeff A, Ertelt-Heitzmann V, Allgaier H P, Olschewski M, Nitschke R, Haxelmans S, Koelble K, Behrens J, Blum H E. Coordinated expression of cyclin D1 and LEF-1/TCF transcription factor is restricted to a subset of hepatocellular carcinoma. Liver Int, 2005, 25(4): 839–847

    Article  PubMed  CAS  Google Scholar 

  123. Du Q, Park K S, Guo Z, He P, Nagashima M, Shao L, Sahai R, Geller D A, Hussain S P. Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res, 2006, 66(14): 7024–7031

    Article  PubMed  CAS  Google Scholar 

  124. Yamamoto Y, Sakamoto M, Fujii G, Tsuiji H, Kenetaka K, Asaka M, Hirohashi S. Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 2003, 37(3): 528–533

    Article  PubMed  CAS  Google Scholar 

  125. Tan X P, Apte U, Micsenyi A, Kotsagrelos E, Luo J H, Ranganathan S, Monga D K, Bell A. Epidermal growth factor receptor: A novel target of the Wnt/β-catenin pathway in liver. Gastroenterology, 2005, 129(1): 285–302

    Article  PubMed  CAS  Google Scholar 

  126. Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B, Simon M T, Renard C A, Buendia M A, Perret C. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with β-catenin mutations. Oncogene, 2006, 25(4): 599–608

    Article  PubMed  CAS  Google Scholar 

  127. Renard C A, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A, Perret C, Buendia M A. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res, 2007, 67(3): 901–910

    Article  PubMed  CAS  Google Scholar 

  128. Lee H S, Park M H, Yang S J, Park K C, Kim N S, Kim Y S, Kim D I, Yoo H S, Choi E J, Yeom Y I. Novel candidate target of Wnt/β-catenin signaling in hepatoma cells. Life Sci, 2007, 80(7): 690–698

    Article  PubMed  CAS  Google Scholar 

  129. Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M, Taketo M M. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res, 2002, 62(7): 1971–1977

    PubMed  CAS  Google Scholar 

  130. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo M M. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res, 2004, 64(1): 48–54

    Article  PubMed  CAS  Google Scholar 

  131. James Nelson W, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science, 2004, 303(5663): 1483–1487

    Article  PubMed  CAS  Google Scholar 

  132. Essers M A, de Vries-Smits L M, Barker N, Polderman P E, Burgering B M, Korswagen H C. Functional Interaction between β-catenin and FOXO in oxidative stress signaling. Science, 2005, 308(5725): 1081–1184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Yu, L. & Lu, Y. Wnt/β-catenin signaling pathway and its role in hepatocellular carcinoma. Front. Med. China 2, 216–228 (2008). https://doi.org/10.1007/s11684-008-0042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-008-0042-x

Keywords

Navigation